0


计算生物学中的机器学习(频点法)

Machine Learning in Computational Biology (the frequentist approach)
课程网址: http://videolectures.net/mlpmsummerschool2013_vert_computational_...  
主讲教师: Jean-Philippe Vert
开课单位: 巴黎高科矿业学校
开课时间: 2014-05-13
课程语种: 英语
中文简介:
这些讲座将介绍统计学习中的一些一般概念和算法,并通过在生物学和个性化医学中的应用来说明它们。我将讨论分类和回归中的线性方法、带正定核的非线性扩展、特征选择和结构稀疏性。应用将包括癌症的分子诊断和预后、药物发现的虚拟筛选和生物网络推断。 大纲: 生物学和个性化医学的模式识别和回归简介 回归和分类的线性方法(OLS、RR、LDA、QDA、逻辑回归、SVM…) 带核的非线性扩展 特征选择和结构化稀疏性(套索和变体) 应用:从基因组数据预测癌症预后 应用:药物发现 应用:基因网络推理
课程简介: These lecture will introduce some general concepts and algorithms in statistical learning, illustrating them through applications in biology and personalized medicine. I will discuss linear methods in classification and regression, nonlinear extensions with positive definite kernels, and feature selection and structured sparsity. Application will include molecular diagnosis and prognosis in cancer, virtual screening in drug discovery, and biological network inference. Outline: Introduction to pattern recognition and regression for biology and personalized medicine Linear methods for regression and classification (OLS, RR, LDA, QDA, logistic regression, SVM...) Nonlinear extensions with kernels Feature selection and structured sparsity (lasso and variants) Application: cancer prognosis from genomic data Application: drug discovery Application: gene networks inference
关 键 词: 生物学; 个性化医学; 生物网络推断
课程来源: 视频讲座网
数据采集: 2021-12-10:zkj
最后编审: 2021-12-10:zkj
阅读次数: 55