消除个性化医学机器学习中不必要的变异Removing unwanted variation in machine learning for personalized medicine |
|
课程网址: | http://videolectures.net/ESHGsymposium2016_speed_personalized_med... |
主讲教师: | Terry Speed |
开课单位: | 沃尔特伊丽莎医学研究所 |
开课时间: | 2016-07-18 |
课程语种: | 英语 |
中文简介: | 个性化医疗的机器学习将不可避免地建立在大型组学数据集上。这些数据通常是数月或数年收集的,有时涉及多个实验室。不必要的变异(UV)可能来自技术因素,如批次、不同平台或实验室,或来自生物信号,如年龄、种族或细胞成分的异质性,这些与研究中的关注因素无关。当目标是合并几个较小的研究时,也会出现类似的问题。一项非常重要的任务是在不丢失感兴趣的因素的情况下去除这些UV因素。几年前,我们提出了一个通用框架(称为RUV),用于使用阴性对照基因去除微阵列数据中的紫外线。当应用于多个数据集时,它表现出非常好的差异表达分析性能(即,具有已知的感兴趣因素)。我们在这次演讲中的目标是描述我们最近在机器学习环境中做类似事情的结果,特别是在进行分类时。 |
课程简介: | Machine Learning for Personalized Medicine will inevitably build on large omics datasets. These are often collected over months or years, and sometimes involve multiple labs. Unwanted variation (UV) can arise from technical elements such as batches, different platforms or laboratories, or from biological signals such as heterogeneity in age, ethnicity or cellular composition, which are unrelated to the factor of interest in the study. Similar issues arise when the goal is to combine several smaller studies. A very important task is to remove these UV factors without losing the factors of interest. Some years ago we proposed a general framework (called RUV) for removing UV in microarray data using negative control genes. It showed very good behavior for differential expression analysis (i.e., with a known factor of interest) when applied to several datasets. Our objective in this talk is to describe our recent results doing similar things in a machine learning context, specifically when carrying out classification. |
关 键 词: | 个性化医疗的机器学习; 大型组学数据集; 差异表达分析性能 |
课程来源: | 视频讲座网 |
数据采集: | 2021-12-24:zkj |
最后编审: | 2021-12-24:zkj |
阅读次数: | 52 |