0


制定患者群体分层方法和定制医疗干预措施

Development of methods for patient group stratification and tailored medical interventions
课程网址: http://videolectures.net/ESHGsymposium2016_urda_munoz_medical_int...  
主讲教师: Daniel Urda Muñoz
开课单位: 马拉加大学
开课时间: 2016-07-18
课程语种: 英语
中文简介:
准确、及时地预测疾病相关特征并识别疾病风险的最强预测因子对于患者、医疗服务提供者和医疗行业至关重要。早期风险预测可以实现预防和早期治疗干预,从而降低护理成本并改善预后,而识别风险或反应的稳健预测因子可以产生新的靶点,降低临床试验成本,提高针对个体患者的药物疗效。为了实现这些目标,正在进行巨额投资。 在这个项目中,我们的目标是利用免费公共存储库和我们的研究伙伴进行的专有研究中提供的-组学和临床/环境数据的组合来改进对复杂结果的预测。本项目将侧重于以下发展目标: 熟悉为高维预测开发的通用和尖端方法。 利用组学数据开发和应用预测方法,以超越传统的临床模型。具体的重点是试图在数据中找到结构,以便对患者(或疾病亚型)进行自动分层,以改进预测。 将现有医学和/或生物学知识纳入预测模型,以提高预测质量。 开发一种利用多个相关性状的信息来改进目标性状预测的方法。为了实现这一点,我们将开发一种方法,使用在线数据库中总结的结果自动识别与目标疾病相关的性状。 扩展已开发的处理不平衡数据集和/或稀有特征的方法。(请注意,人口水平研究的“病例”数量往往非常少,需要加以考虑)。
课程简介: Accurate and timely prediction of disease-related traits and identification of the strongest predictors of disease risks are critical for patients, health service providers, and healthcare industries. Early risk prediction can enable prevention and early therapeutic interventions, thus reducing costs of care and improving prognosis, whereas identification of robust predictors of risk or response can lead to novel targets, reduce costs of clinical trials, and improve efficacy of drugs tailored to individual patients. Huge investments are being made to address these goals. In this project, we aim to improve predictions of complex outcomes using combinations of -omics and clinical/environmental data available from free-public repositories and from proprietary studies conducted by our research partners. This project will focus on the following development objectives: Establishing familiarity with common and cutting-edge methods developed for high-dimensional predictions. Developing and applying predictive methods using -omics data in order to outperform traditional clinical models. The specific focus will be on trying to find structure in the data to allow for automatic stratification of patients (or subtyping of diseases) in order to improve predictions. Incorporating existing medical and/or biological knowledge into predictive models to improve quality of predictions. Developing an approach using information about multiple related traits to improve prediction of the target trait. To achieve this, we will develop an approach for automatic identification of traits related to the target disease using findings summarized in online databases. Extending the developed methods for dealing with imbalanced datasets and/or rare features. (Note that population-level studies tend to have a disproportionally low number of “cases”, which will need to be taken into account).
关 键 词: 预防和早期治疗干预; 疾病风险; 医疗服务
课程来源: 视频讲座网
数据采集: 2021-12-26:zkj
最后编审: 2021-12-26:zkj
阅读次数: 58