人工神经网络学习的不合理有效性Unreasonable Effectiveness of Learning Artificial Neural Networks |
|
课程网址: | http://videolectures.net/BIDSAconference2016_zecchina_neural_netw... |
主讲教师: | Riccardo Zecchina |
开课单位: | 都灵理工学院 |
开课时间: | 2016-09-28 |
课程语种: | 英语 |
中文简介: | 深度网络是数据科学中应用最广泛的工具之一。在这些系统中,学习原则上是一个困难的问题,但在实践中,启发式算法通常能找到具有良好泛化特性的解。我们提出了一种新的大偏差度量来解释这种良好的性能:我们表明,优化环境中有一些区域是健壮的和可访问的,它们的存在对于在一类特别困难的学习问题上实现良好的性能至关重要。在这些结果的基础上,我们介绍了改进现有优化算法的基本算法方案,并为进一步研究大型数据集和新计算技术的有效学习提供了框架。 |
课程简介: | Deep networks are some of the most widely used tools in data science. Learning is in principle a hard problem in these systems, but in practice heuristic algorithms often find solutions with good generalization properties. We propose an explanation of this good performance in terms of a novel large-deviation measure: we show that there are regions of the optimization landscape which are both robust and accessible, and that their existence is crucial to achieve good performance on a class of particularly difficult learning problems. Building on these results, we introduce basic algorithmic schemes which improve existing optimization algorithms and provide a framework for further research on efficient learning for huge data sets and for novel computational technologies. |
关 键 词: | 深度网络; 数据科学; 大型数据集 |
课程来源: | 视频讲座网 |
数据采集: | 2021-12-26:zkj |
最后编审: | 2021-12-26:zkj |
阅读次数: | 60 |