0


接触$3$-歧管的辛填充拓扑

Topology of symplectic fillings of contact $3$-manifolds
课程网址: http://videolectures.net/8ecm2021_ozbagci_topology_fillings/  
主讲教师: Burak Özbağcı
开课单位: 科奇大学
开课时间: 2021-07-06
课程语种: 英语
中文简介:
自从唐纳森证明每个辛 4 流形承认 Lefschetz 铅笔和 Giroux 证明每个接触 3 流形承认一个适应的开书分解以来,在世纪之交,Lefschetz 纤维化和开书被有效地使用以获得有趣的结果 关于接触三流形的辛填充拓扑。 在本次演讲中,我将介绍我在过去 20 年中与几位合著者共同工作的基础上对当前主题的贡献。
课程简介: Ever since Donaldson showed that every symplectic 4-manifold admits a Lefschetz pencil and Giroux proved that every contact 3-manifold admits an adapted open book decomposition, at the turn of the century, Lefschetz fibrations and open books have been used fruitfully to obtain interesting results about the topology of symplectic fillings of contact 3-manifolds. In this talk, I will present my contribution to the subject at hand based on joint work with several coauthors during the past 20 years.
关 键 词: 辛四流形; 幸填充拓扑; 三流形
课程来源: 视频讲座网
数据采集: 2022-03-24:hqh
最后编审: 2022-03-24:hqh
阅读次数: 42