首页偏微分方程
   首页数学分析
   首页函数论
   首页数学
0


凸积分和合成湍流

Convex integration and synthetic turbulence
课程网址: http://videolectures.net/8ecm2021_szekelyhidi_convex_integration/  
主讲教师: László Székelyhidi Jr.
开课单位: 莱比锡大学
开课时间: 2021-07-06
课程语种: 英语
中文简介:
在过去的十年中,凸积分已被确立为一种强大且通用的技术,用于构造流体动力学中出现的各种非线性偏微分方程系统的弱解,包括欧拉和纳维-斯托克斯方程。以这种方式获得的存在定理付出了高昂的代价:解是高度不规则的、不可微分的,并且非常不唯一,因为它们通常有无穷多个。因此,这种技术通常被认为是本着 Weierstrass 的不可微函数的精神获得数学反例的一种方式,而不是推进物理理论。 “病态的”、“狂野的”、“矛盾的”、“违反直觉的”这些形容词通常与通过凸积分获得的解决方案相关联。在本次讲座中,我想利用一些最近的例子来说明这个故事还有很多方面,并且通过正确的使用和解释,凸积分工具箱确实可以为流体动力学问题提供有用的见解。
课程简介: In the past decade convex integration has been established as a powerful and versatile technique for the construction of weak solutions of various nonlinear systems of partial differential equations arising in fluid dynamics, including the Euler and Navier-Stokes equations. The existence theorems obtained in this way come at a high price: solutions are highly irregular, non-differentiable, and very much non-unique as there is usually infinitely many of them. Therefore this technique has often been thought of as a way to obtain mathematical counterexamples in the spirit of Weierstrass’ non-differentiable function, rather than advancing physical theory; ”pathological”, ”wild”, ”paradoxical”, ”counterintuitive” are some of the adjectives usually associated with solutions obtained via convex integration. In this lecture I would like to draw on some recent examples to show that there are many more sides to the story, and that, with proper usage and interpretation, the convex integration toolbox can indeed provide useful insights for problems in hydrodynamics.
关 键 词: 凸积分; 可微函数; 流体动力学
课程来源: 视频讲座网
数据采集: 2022-03-24:hqh
最后编审: 2022-03-24:hqh
阅读次数: 124