低资源语言数据集创建、管理和分类:Setswana 和 SepediLow resource language dataset creation, curation and classification: Setswana and Sepedi |
|
课程网址: | http://videolectures.net/rail2020_marivate_low_resource/ |
主讲教师: | : Vukosi Marivate |
开课单位: | 比勒陀利亚大学 |
开课时间: | 2020-03-20 |
课程语种: | 英语 |
中文简介: | 自然语言处理的最新进展只为有代表性的语言带来了福音,否定了对鲜为人知的全球语言的研究。 这部分是由于精选数据和研究资源的可用性。 当前与资源匮乏的语言有关的挑战之一是针对不同用例的数据集的收集、管理和准备的明确指南。 在这项工作中,我们负责为 Setswana 和 Sepedi 创建两个专注于新闻标题(即短文本)的数据集,并从这些数据集中创建一个新闻主题分类任务。 在这项研究中,我们记录了我们的工作,提出了分类基线,并研究了一种更适合低资源语言的数据增强方法,以提高分类器的性能。 |
课程简介: | The recent advances in Natural Language Processing have only been a boon for well represented languages, negating research in lesser known global languages. This is in part due to the availability of curated data and research resources. One of the current challenges concerning low-resourced languages are clear guidelines on the collection, curation and preparation of datasets for different use-cases. In this work, we take on the task of creating two datasets that are focused on news headlines (i.e short text) for Setswana and Sepedi and the creation of a news topic classification task from these datasets. In this study, we document our work, propose baselines for classification, and investigate an approach on data augmentation better suited to low-resourced languages in order to improve the performance of the classifiers. |
关 键 词: | 自然语言处理; 数据集; 低资源语言 |
课程来源: | 视频讲座网 |
数据采集: | 2022-03-30:hqh |
最后编审: | 2022-03-30:hqh |
阅读次数: | 55 |