0


常识智能:破解人工智能的长期挑战

Commonsense Intelligence: Cracking the Longstanding Challenge in AI
课程网址: http://videolectures.net/www2021_choi_commonsense_intelligence/  
主讲教师: Yejin Choi
开课单位: 华盛顿大学
开课时间: 2021-05-03
课程语种: 英语
中文简介:
尽管在深度学习方面取得了相当大的进步,人工智能仍然是狭隘而脆弱的。一个根本的限制是它缺乏常识:对日常情况和事件的直觉推理,这反过来又需要对物理和社会世界如何运作的广泛常识知识,从幼稚的物理学到民间心理学,再到伦理规范。在本次演讲中,我将分享我们最近在神经符号常识模型建模方面的探索,通过将存储在大规模常识图中的符号和声明性知识与存储在大规模神经语言模型中的神经和隐式知识相结合。最后,我将讨论脱离当前流行的学习范式的需求,这些范式导致任务学习,甚至是数据集特定的学习,并根据人类认知为常识人工智能提出开放性研究问题。
课程简介: Despite considerable advances in deep learning, AI remains to be narrow and brittle. One fundamental limitation is its lack of common sense: intuitive reasoning about everyday situations and events, which in turn, requires a wide spectrum of commonsense knowledge about how the physical and social world works, ranging from naive physics to folk psychology to ethical norms. In this talk, I will share our recent adventures in modeling neuro-symbolic commonsense models by melding symbolic and declarative knowledge stored in large-scale commonsense graphs with neural and implicit knowledge stored in large-scale neural language models. I will conclude the talk by discussing the needs for departing from the currently prevalent learning paradigms that lead to task- or even dataset-specific learning, and open research questions for commonsense AI in light of human cognition.
关 键 词: 人工智能; 常识模型建模; 大规模常识图
课程来源: 视频讲座网
数据采集: 2022-04-13:zkj
最后编审: 2022-04-13:zkj
阅读次数: 26