一种新的多重分形分析的多方向小波金字塔纹理描述符A New Texture Descriptor Using Multifractal Analysis in Multi-orientation Wavelet Pyramid |
|
课程网址: | http://videolectures.net/cvpr2010_ji_ntdu/ |
主讲教师: | Hui Ji |
开课单位: | 新加坡国立大学 |
开课时间: | 2010-07-19 |
课程语种: | 英语 |
中文简介: | 基于纹理图像小波金字塔的多重分形分析,本文提出了一种新的纹理描述符,它隐含地结合了空域和频域的信息。除了传统的小波变换之外,我们的方法中使用了一个多向小波领导金字塔,它可以对纹理边缘的多尺度信息进行鲁棒编码。此外,得到的纹理模型在经验上显示出自然纹理的强幂律关系,其可以通过多重分形分析很好地表征。结合关于仿射不变局部斑块的统计,我们提出的纹理描述符对于缩放和旋转变化,更一般的几何变换和照明变化是鲁棒的。另外,所提出的纹理描述符在计算上是有效的,因为它不需要许多昂贵的处理步骤,例如,现有方法经常使用的文本生成和交叉仓比较。作为一种应用,将提出的描述符应用于纹理分类,并在几个公共纹理数据集上的实验结果验证了描述符的准确性和效率。 |
课程简介: | Based on multifractal analysis in wavelet pyramids of texture images, a new texture descriptor is proposed in this paper that implicitly combines information from both spatial and frequency domains. Beyond the traditional wavelet transform, a multi-oriented wavelet leader pyramid is used in our approach that robustly encodes the multi-scale information of texture edgels. Moreover, the resulting texture model shows empirically a strong power law relationship for nature textures, which can be characterized well by multifractal analysis. Combined with a statistics on affine invariant local patches, our proposed texture descriptor is robust to scale and rotation changes, more general geometrical transforms and illumination variations. In addition, the proposed texture descriptor is computationally efficient since it does not require many expensive processing steps, e.g., texton generation and cross-bin comparisons, which are often used by existing methods. As an application, the proposed descriptor is applied to texture classification and the experimental results on several public texture datasets verified the accuracy and efficiency of our descriptor |
关 键 词: | 空间域; 频率域; 纹理数据 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-15:wuyq |
阅读次数: | 69 |