0


动态二进制潜变量模型的三维人体姿态跟踪

Dynamical Binary Latent Variable Models for 3D Human Pose Tracking
课程网址: http://videolectures.net/cvpr2010_taylor_dblv/  
主讲教师: Graham Taylor
开课单位: 圭尔夫大学
开课时间: 2010-07-19
课程语种: 英语
中文简介:
我们引入一个新的类概率的潜变量模型,称为有条件受限制的玻尔兹曼机的隐式混合(imcrbm)用于人体姿态跟踪的imcrbm主要性能如下:(1)学习是线性的训练样例的数量可以从大型数据集的学习;(2)学习的多个活动连贯的模型;(3)它会自动发现原子”的movemes”;和(4)可以推断活动之间的转换,甚至当这种转变并不出现在训练集。我们描述的模型和它是如何得知我们证明其使用的上下文中的贝叶斯滤波的多视点和单眼姿态跟踪。该模型处理困难的情景,包括多个活动和活动之间的转换。我们报告的国家的最先进的结果HumanEva数据集。
课程简介: We introduce a new probability like latent variable model, which is called the conditional constrained Boltzmann implicit hybrid (imcrbm) for human posture tracking. The main performances of imcrbm are as follows: (1) learning is the learning that the number of linear training samples can be learned from large datasets; (2) learning multiple activity coherent models; (3) it will automatically discover the "moves" of atoms ”; and (4) can infer the transition between activities even when the transition does not appear in the training set. We describe the model and how it is known that we prove its use in context of Bayesian filtering for multi view and single eye attitude tracking. The model deals with difficult scenarios, including multiple activities and transitions between them. We report on the state-of-the-art results of the humaneva dataset.
关 键 词: 类概率; 潜变量模型; 贝叶斯滤波
课程来源: 视频讲座网
最后编审: 2021-09-15:zyk
阅读次数: 63