在时空复杂系统的混沌鞍Chaotic Saddles in Spatiotemporal Complex Systems |
|
课程网址: | http://videolectures.net/eccs07_miranda_css/ |
主讲教师: | Rodrigo A. Miranda |
开课单位: | 国家空间研究所 |
开课时间: | 2007-12-03 |
课程语种: | 英语 |
中文简介: | 在许多确定性系统中已经观察到诸如混沌鞍,奇怪驱虫剂,半吸引子和超瞬变的混沌瞬态(Kantz和Grassberger 1985; Rempel和Chian 2005; Chian,Rempel和Rogers 2006; Rempel和Chian 2007)。可以导出公式,将瞬态的平均寿命与混沌瞬态的维数联系起来,并将其与流量的Lyapunov指数联系起来。在本文中,我们证明混沌鞍是扩展复杂系统中混沌瞬态和间歇性的原因。例如,与流体和等离子体研究相关的非线性正则化长波方程(Rempel和Chian 2007)。在通过准周期性和时间混沌转变为时空混沌之后,间歇时间序列显示了时间和时空混沌体制之间的随机切换。在向时空混沌过渡之前,我们确定了一个时空混沌鞍,它负责混沌瞬态,模拟后过渡吸引子的动力学,并可用于预测其行为。在向时空混沌过渡之后,我们描述了一种识别时间和时空混沌鞍的方法,这种鞍尾负责两种间歇状态。在Kuramoto-Sivashinsky方程中也观察到类似的情况。我们认为这种情景可以很容易地在扩展的耗散动力系统中找到,这些系统在转变为持续的时空混沌之前表现出瞬态时空混沌,这种混沌通过类似危机的混沌过渡从时间混沌发展到时空混沌,例如管流和非线性光学系统。实际上,已经在心脏细胞环和漂移波的等离子体实验室实验的模型中观察到这种情况。 |
课程简介: | Chaotic transients such as chaotic saddles, strange repellers, semi-attractors, and super-transients have been observed in many deterministic systems (Kantz and Grassberger 1985; Rempel and Chian 2005; Chian, Rempel and Rogers 2006; Rempel and Chian 2007). Formulas can be derived to relate the average life time of the transient to dimensions of the chaotic transient, and to Lyapunov exponents of the flow on it.In this paper, we show that chaotic saddles are responsible for chaotic transients and intermittency in extended complex systems exemplified by a nonlinear regularized long-wave equation, relevant to fluid and plasma studies (Rempel and Chian 2007). Following a transition to spatiotemporal chaos via quasiperiodicity and temporal chaos, the intermittent time series displays random switching between regimes of temporal and spatiotemporal chaos. Before the transition to spatiotemporal chaos, we identify a spatiotemporal chaotic saddle responsible for chaotic transients that mimic the dynamics of the post-transition attractor and can be used to predict its behavior. After the transition to spatiotemporal chaos, we describe a method to identify temporal and spatiotemporal chaotic saddles responsible for the two intermittent regimes.A similar scenario has been observed in the Kuramoto-Sivashinsky equation. We suggest that this scenario can be readily found in extended dissipative dynamical systems that exhibit transient spatiotemporal chaos prior to the transition to sustained spatiotemporal chaos, which evolve from temporal chaos to spatiotemporal chaos via a crisis-like chaotic transition, e.g., pipe flows and nonlinear optical systems. In fact, this scenario has been observed in a model of ring of cardiac cells and plasma laboratory experiments of drift waves. |
关 键 词: | 混沌等瞬态混沌鞍; 间歇流型; 耗散动力系统 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-07:liush |
阅读次数: | 89 |