首页神经生物学
   首页数学
0


从前额皮层数据的低维网络模型

Low-dimensional network models for data from the prefrontal cortex
课程网址: http://videolectures.net/eccs08_machens_ldnmfd/  
主讲教师: Christian Machens
开课单位: 巴黎高等师范学院
开课时间: 2008-10-17
课程语种: 英语
中文简介:
在短期记忆维持期间,在相同条件下记录的前额叶皮层(PFC)中的不同神经元显示出多种时间动态和响应特性[1]。这些数据是更普遍的发现的一个具体例子,即来自额叶皮质的神经记录经常揭示不同的神经元具有非常不同的响应特征。对这种复杂的响应进行建模很困难。最常见的是,响应的某些功能是关注的,并且构建了适合这些缩减功能的模型。但是,可以轻松捕获完整的响应复杂性吗?在这里,我们通过将简单的递归神经网络模型拟合到数据来解决问题。按照传统方法,我们首先将神经元分组到不同的类中。当从单个类别中选择神经元时,估计过程产生连接矩阵,其中两个神经元群体通过相互抑制和自激来耦合。连通矩阵具有等级1,并且与我们之前提出的模型大致一致[2]。当从两个类中选择神经元时,出现类似于环吸引子网络的连接矩阵,等级为2。然而,只有在从整套神经元估计网络架构时才能捕获观察到的神经动力学的完整复杂性和丰富性。在这种情况下,得到的连通矩阵具有等级5,并且其结构由随机性支配。对所得网络的模拟再现完整数据集。我们证明连通矩阵的几个特征值接近零,因此网络动力学沿着各自的维度具有恒定或积分流。最后,我们讨论估计的连通性矩阵与测量的噪声相关性的一致性。 [1]猕猴前额叶皮层躯体感觉参数工作记忆的时序和神经编码。光盘。 Brody,A。Hernandez,A。Zainos和R. Romo,Cereb。 Cortex 13:1196-1207,2003。[2]灵活控制相互抑制:双区间鉴别的神经模型。 C.K. Machens,R。Romo和C.D. Brody,Science,307:1121-1124,2005。
课程简介: During short-term memory maintenance, different neurons in prefrontal cortex (PFC), recorded under identical conditions, show a wide variety of temporal dynamics and response properties [1]. These data are a specific example of the more general finding that neural recordings from frontal cortices often reveal that different neurons have very different response characteristics. Modeling this complexity of responses has been difficult. Most commonly, some features of the responses are focused on, and models that fit those reduced features are built. But can the full complexity of responses be easily captured ? Here we attack the problem by fitting simple recurrent neural network models to the data. Following the traditional approach, we first group neurons into different classes. When selecting neurons from a single class the estimation procedure yields a connectivity matrix with two populations of neurons coupled by mutual inhibition and self-excitation. The connectivity matrix has rank one and approximately agrees with a model we proposed earlier [2]. When selecting neurons from two classes, a connectivity matrix similar to that of the ring attractor network emerges, with a rank of two. The full complexity and richness of the observed neural dynamics, however, can only be captured when estimating a network architecture from the full set of neurons. In this case, the resulting connectivity matrix has rank five and its structure is dominated by randomness. Simulations of the resulting network reproduce the full data set. We show that several of the eigenvalues of the connectivity matrix are close zero, so that the network dynamics has either a constant or integrating flow along the respective dimensions. Finally, we discuss the consistency of the estimated connectivity matrices with the measured noise correlations. [1] Timing and Neural Encoding of Somatosensory Parametric Working Memory in Macaque Prefrontal Cortex. C.D. Brody, A. Hernandez, A. Zainos, and R. Romo, Cereb. Cortex 13:1196-1207, 2003. [2] Flexible control of mutual inhibition: a neural model of two- interval discrimination. C.K. Machens, R. Romo, and C.D. Brody, Science, 307:1121-1124, 2005.
关 键 词: 前额叶皮层; 简单递归神经网络模型; 连接矩阵
课程来源: 视频讲座网
最后编审: 2020-06-18:dingaq
阅读次数: 73