密度偏差抽样技术来提高集群的代表性A Density-Biased Sampling Technique to Improve Cluster Representativeness |
|
课程网址: | http://videolectures.net/ecml07_appel_dbs/ |
主讲教师: | Ana Paula Appel |
开课单位: | 圣保罗大学 |
开课时间: | 2008-01-28 |
课程语种: | 英语 |
中文简介: | 数据挖掘算法→在计算上非常昂贵。 采样→降低复杂度和摘要得到更快; 集群具有不同的尺寸和颜色;均匀采样的问题; 如何在不遗漏数据的情况下对多维数据集进行采样 集群,即使它们是不平衡的,也没有先前的 关于集群的知识? BBS - Biased Box Sampling是一种选择点的新技术 以这种方式保持每个集群的代表性。 它可以承受高维度的缺点; 对两个点上的噪声和线性不敏感 数字Eof属性。 |
课程简介: | Data mining algorithms→are computationally very expensive. Sampling→Reduces complexity and Summaries are obtained faster; Clusters have different sizes→problems with uniform sampling; How to sample a multi-dimensional dataset without missing the clusters, even if they are unbalancedand withoutany previous knowledgeabout the clusters? BBS - Biased Box Samplingis a new technique that selects points in such a way to preserve the representativeness of each cluster. It is robust to withstand high-dimensionality drawbacks; insensitive to noise andlinear on both number of pointsNand on the number Eof attributes. |
关 键 词: | 密度偏差抽样技术; 提高; 集群的代表性; 数据挖掘算法; 抽样 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-15:wuyq |
阅读次数: | 39 |