0


不断变化的数据的知识发现

Knowledge Discovery from Evolving Data
课程网址: http://videolectures.net/ecmlpkdd08_bottcher_kdfe/  
主讲教师: Mirko Böttcher, Frank Hoppner, Myra Spiliopoulou
开课单位: 马格德堡大学
开课时间: 2008-10-10
课程语种: 英语
中文简介:
传统上,数据挖掘主要集中在对静态世界的分析,其中收集,存储和分析数据实例以得出模型并根据它们做出决策。最近关于流挖掘的研究提出了处理无法静态收集和存储但必须即时分析的数据的需求。同时,已经认识到并提倡存储,维护,查询和更新从数据派生的模型的需求[LT08]。然而,这些只是动态世界的两个方面,必须通过数据挖掘进行分析:世界正在发生变化,积累的数据也是如此,最终是从它们衍生出来的模型。知识发现在不断变化的世界中面临的挑战有两种形式:(a)使模式适应人口的变化;(b)捕捉,理解和突出变化。在本教程中,我们将讨论与不断变化的环境中的数据挖掘相关的主题,并详细阐述该领域的研究进展。相关研究来自增量挖掘,流挖掘,时间挖掘和变化检测等领域。由于这是一个非常广泛的领域,我们专注于第二个挑战,对变化的理解,并在此背景下组织研究贡献。
课程简介: Data mining has traditionally concentrated on the analysis of a static world, in which data instances are collected, stored and analyzed to derive models and take decisions according to them. More recent research on stream mining has put forward the need to deal with data that cannot be collected and stored statically but must be analyzed on the fly. At the same time, the need to store, maintain, query and update models derived from the data has been recognized and advocated [LT08]. However, these are only two aspects of the dynamic world that must be analyzed with data mining: The world is changing and so do the accumulating data and, ultimately, the models derived from them. The challenges for Knowledge Discovery in a changing world have two forms: (a) adapting the patterns to the changes in the population and (b) capturing, understanding and highlighting the changes. In this tutorial, we discuss the topics associated with data mining for changing environments and elaborate on research advances in this area. Relevant research comes among else from the fields of incremental mining, stream mining, temporal mining and change detection. Since this is a very wide field, we concentrate on the second challenge, the understanding of change, and we organize research contributions in this context.
关 键 词: 数据挖掘; 不断变化; 数据收集
课程来源: 视频讲座网
最后编审: 2020-06-11:dingaq
阅读次数: 44