基于地形图和深度机器学习的癫痫发作检测Epileptic Seizure Detection Using Topographic Maps and Deep Machine Learning |
|
课程网址: | http://videolectures.net/sikdd2019_kojanec_seizure_detection/ |
主讲教师: | Patrik Kojanec |
开课单位: | 普里莫尔斯卡大学数学、自然科学和信息技术学院 |
开课时间: | 2019-11-29 |
课程语种: | 英语 |
中文简介: | 三分之一的癫痫患者对药物治疗有抵抗力。基于脑电信号检测即将到来的癫痫发作的机器的构造是一种有效的替代方法,将有助于提高他们的生活质量。在本文中,我们描述了一种自动检测方法的实现,该方法基于不同频率子带的信号,使用地形图和深度学习技术。我们构建了五个卷积神经网络的集合,对每个子带的样本进行分类,并通过多数投票选择最终决策。当检测一名患者的癫痫发作时,该集成获得了99.20%的准确度、96.48%的灵敏度和99.27%的特异性。此外,当使用从发作间期随机抽取的样本对网络进行训练时,我们在21次发作中的18次中确定了一些接近发作开始的假阳性分类,从而预测了发作的检测。当在癫痫发作五分钟内采集样本进行训练时,没有发生这种错误分类。 |
课程简介: | One third of all epileptic patients is resistant to medical treatment. The construction of machines, that would detect an imminent epileptic attack based on EEG signals, represents an efficient alternative, that would help to increase their quality of life. In this article we described the implementation of an automatic detection method, based on the signal of different frequency sub-bands, using topographic maps and deep learning techniques. We constructed an ensemble of five convolutional neural networks, to classify samples of each sub-band and chose the final decision by a majority voting. The ensemble obtained 99.20% accuracy, 96.48% sensitivity and 99.27% specificity when detecting seizures of one patient. Moreover, when the networks were trained with samples taken randomly from the inter-ictal intervals, we identified on 18 of 21 seizures some false positive classifications close to the seizure onset, thus anticipating the detection of the seizure. Such misclassifications did not occur when training was performed with samples taken within five minutes of the seizure onset. |
关 键 词: | 基于地形图; 深度机器学习; 癫痫发作检测 |
课程来源: | 视频讲座网 |
数据采集: | 2022-09-09:cyh |
最后编审: | 2022-09-19:cyh |
阅读次数: | 29 |