SMOILE:购物者营销优化和反向学习引擎SMOILE: A Shopper Marketing Optimization and Inverse Learning Engine |
|
课程网址: | http://videolectures.net/kdd2019_chenreddy_pakiman_nadarajah/ |
主讲教师: | Parshan Pakiman |
开课单位: | 伊利诺大学芝加哥分校 |
开课时间: | 2020-03-02 |
课程语种: | 英语 |
中文简介: | 产品品牌采用购物者营销(SM)策略,在购买过程中转化购物者。利用回归技术和历史数据的传统营销组合模型(MMM)可用于预测SM策略导致的销售提升的组成部分。由此产生的预测模型是规划未来SM战略的关键输入。然而,传统MMM的实施需要大量的临时人工干预,因为其在(i)明确捕捉决策之间的时间联系方面的灵活性有限;(ii)在将电梯归属于SM期间,考虑业务规则和过去(销售和决策)数据之间的相互作用;以及(iii)确保未来决策符合业务规则。这些问题要求MMM为特定产品和零售商定制结构,每个MMM都需要大量的手工工程来实现令人满意的性能,这是一个重大的实施挑战。我们提出了一个SM优化和反向学习引擎(SMOILE),它将优化和反向强化学习结合起来,以简化实现。SMOILE通过将SM策略选择视为一个连续过程来学习提升模型,利用反向强化学习明确耦合销售和决策数据,并使用优化方法处理广泛的业务规则。使用包含零售商和产品销售和SM支出信息的独特数据集,我们说明了SMOILE如何标准化数据的使用,以规定未来的SM决策。我们还跟踪行业基准,以展示编码SM提升和决策结构的重要性,从而在揭示SM决策的影响时减少虚假结果。 |
课程简介: | Product brands employ shopper marketing (SM) strategies to convert shoppers along the path to purchase. Traditional marketing mix models (MMMs), which leverage regression techniques and historical data, can be used to predict the component of sales lift due to SM tactics. The resulting predictive model is a critical input to plan future SM strategies. The implementation of traditional MMMs, however, requires significant ad-hoc manual intervention due to their limited flexibility in (i) explicitly capturing the temporal link between decisions; (ii) accounting for the interaction between business rules and past (sales and decision) data during the attribution of lift to SM; and (iii) ensuring that future decisions adhere to business rules. These issues necessitate MMMs with tailored structures for specific products and retailers, each requiring significant hand-engineering to achieve satisfactory performance—a major implementation challenge. We propose an SM Optimization and Inverse Learning Engine (SMOILE) that combines optimization and inverse reinforcement learning to streamline implementation. SMOILE learns a model of lift by viewing SM tactic choice as a sequential process, leverages inverse reinforcement learning to explicitly couple sales and decision data, and employs an optimization approach to handle a wide-array of business rules. Using a unique dataset containing sales and SM spend information across retailers and products, we illustrate how SMOILE standardizes the use of data to prescribe future SM decisions. We also track an industry benchmark to showcase the importance of encoding SM lift and decision structures to mitigate spurious results when uncovering the impact of SM decisions. |
关 键 词: | SMOILE; 购物者营销优化; 反向学习引擎; 耦合销售和决策数据 |
课程来源: | 视频讲座网 |
数据采集: | 2022-09-15:cyh |
最后编审: | 2022-09-19:cyh |
阅读次数: | 47 |