学习使用数字依从性数据为结核病患者制定干预措施Learning to Prescribe Interventions for Tuberculosis Patients Using Digital Adherence Data |
|
课程网址: | http://videolectures.net/kdd2019_killian_wilder_sharma/ |
主讲教师: | Jackson A Killian |
开课单位: | 南加州大学 |
开课时间: | 2020-03-02 |
课程语种: | 英语 |
中文简介: | 数字依从技术(DAT)是一种越来越流行的方法,用于验证患者对许多药物的依从性。我们分析了99DOTS服务的一个城市的数据,99DOTS是一种基于电话的DAT,在印度每年有近300万人患有结核病。数据包含近17000名患者和2.1M剂量记录。我们为从这些真实世界的数据中学习奠定了基础,包括一种避免对用于机器学习的训练数据进行未观察干预的方法。然后,我们构建了一个深度学习模型,展示了其可解释性,并展示了如何在三种不同的临床场景中对其进行调整和训练,以更好地针对和改进患者护理。在实时风险预测设置中,我们的模型可用于主动干预,比当前的启发式基线多21%的患者和76%的漏服剂量。对于结果预测,我们的模型比基线方法好40%,允许城市将更多资源用于有失败风险的患者负担更重的诊所。最后,我们提出了一个案例研究,展示了如何在端到端的以决策为中心的学习环境中对我们的模型进行培训,以在卫生工作者面临的决策问题示例中实现15%的解决方案质量。 |
课程简介: | Digital Adherence Technologies (DATs) are an increasingly popular method for verifying patient adherence to many medications. We analyze data from one city served by 99DOTS, a phone-call-based DAT deployed for Tuberculosis (TB) treatment in India where nearly 3 million people are afflicted with the disease each year. The data contains nearly 17,000 patients and 2.1M dose records. We lay the groundwork for learning from this real-world data, including a method for avoiding the effects of unobserved interventions in training data used for machine learning. We then construct a deep learning model, demonstrate its interpretability, and show how it can be adapted and trained in three different clinical scenarios to better target and improve patient care. In the real-time risk prediction setting our model could be used to proactively intervene with 21% more patients and before 76% more missed doses than current heuristic baselines. For outcome prediction, our model performs 40% better than baseline methods, allowing cities to target more resources to clinics with a heavier burden of patients at risk of failure. Finally, we present a case study demonstrating how our model can be trained in an end-to-end decision focused learning setting to achieve 15% better solution quality in an example decision problem faced by health workers. |
关 键 词: | 学习使用数字; 依从性数据; 为结核病患者制定干预措施 |
课程来源: | 视频讲座网 |
数据采集: | 2022-09-16:cyh |
最后编审: | 2022-09-19:cyh |
阅读次数: | 37 |