迈向可持续奶牛管理-一种用于发情检测的机器学习增强方法Towards Sustainable Dairy Management - A Machine Learning Enhanced Method for Estrus Detection |
|
课程网址: | http://videolectures.net/kdd2019_fauvel_masson_fromont/ |
主讲教师: | Kevin Fauvel |
开课单位: | INRIA Rennes |
开课时间: | 2020-03-02 |
课程语种: | 英语 |
中文简介: | 我们的研究采用机器学习方法应对奶牛场牛奶生产资源利用效率的挑战。繁殖是奶牛场表现的关键因素,因为奶牛产奶始于小牛的出生。因此,检测发情期(奶牛唯一易受孕的时期)对农场效率至关重要。我们的目标是提高发情检测(性能、可解释性),尤其是目前未检测到的无症状发情(占发情总量的35%),并允许农民依靠基于可负担数据(活动、温度)的自动发情检测解决方案。在本文中,我们首先提出了一种结合真实世界数据分析的新方法,通过机器学习方法来解决行为和无声发情检测。其次,我们提出了LCE算法,这是一种基于局部级联的算法,由于其检测无声发情的能力,它在发情检测方面明显优于典型的商业解决方案。然后,我们的研究揭示了活动传感器部署在发情检测中的关键作用。最后,我们提出了一种基于全局和局部(行为与沉默)算法可解释性(SHAP)的方法,以减少发情检测解决方案中的不信任。 |
课程简介: | Our research tackles the challenge of milk production resource use efficiency in dairy farms with machine learning methods. Reproduction is a key factor for dairy farm performance since cows milk production begin with the birth of a calf. Therefore, detecting estrus, the only period when the cow is susceptible to pregnancy, is crucial for farm efficiency. Our goal is to enhance estrus detection (performance, interpretability), especially on the currently undetected silent estrus (35% of total estrus), and allow farmers to rely on automatic estrus detection solutions based on affordable data (activity, temperature). In this paper, we first propose a novel approach with real-world data analysis to address both behavioral and silent estrus detection through machine learning methods. Second, we present LCE, a local cascade based algorithm that significantly outperforms a typical commercial solution for estrus detection, driven by its ability to detect silent estrus. Then, our study reveals the pivotal role of activity sensors deployment in estrus detection. Finally, we propose an approach relying on global and local (behavioral versus silent) algorithm interpretability (SHAP) to reduce the mistrust in estrus detection solutions. |
关 键 词: | 迈向可持续奶牛管理; 发情检测的机器学习; 机器学习增强方法 |
课程来源: | 视频讲座网 |
数据采集: | 2022-09-16:cyh |
最后编审: | 2022-09-19:cyh |
阅读次数: | 43 |