Auto-Keras:一种高效的神经结构搜索系统Auto-Keras: An Efficient Neural Architecture Search System |
|
课程网址: | http://videolectures.net/kdd2019_jin_song_hu/ |
主讲教师: | Haifeng Jin |
开课单位: | 得克萨斯农工大学 |
开课时间: | 2020-03-02 |
课程语种: | 英语 |
中文简介: | 神经体系结构搜索(NAS)被提出用于自动调整深层神经网络,但现有的搜索算法,如NASNet、PNAS,通常存在计算成本高昂的问题。网络形态化在改变神经网络结构的同时保持了神经网络的功能,通过在搜索过程中实现更高效的训练,可以对NAS有所帮助。在本文中,我们提出了一个新的框架,使贝叶斯优化能够指导网络形态以进行有效的神经架构搜索。该框架开发了一个神经网络内核和一个树形结构的获取函数优化算法,以有效地探索搜索空间。已经对真实世界的基准数据集进行了大量实验,以证明所开发框架的性能优于最先进的方法。此外,我们基于我们的方法构建了一个开源的AutoML系统,即Auto Keras。有关代码和文档,请访问autokeras.该系统在CPU和GPU上并行运行,具有针对不同GPU内存限制的自适应搜索策略。 |
课程简介: | Neural architecture search (NAS) has been proposed to automatically tune deep neural networks, but existing search algorithms, e.g., NASNet, PNAS, usually suffer from expensive computational cost. Network morphism, which keeps the functionality of a neural network while changing its neural architecture, could be helpful for NAS by enabling more efficient training during the search. In this paper, we propose a novel framework enabling Bayesian optimization to guide the network morphism for efficient neural architecture search. The framework develops a neural network kernel and a tree-structured acquisition function optimization algorithm to efficiently explores the search space. Extensive experiments on real-world benchmark datasets have been done to demonstrate the superior performance of the developed framework over the state-of-the-art methods. Moreover, we build an open-source AutoML system based on our method, namely Auto-Keras. The code and documentation are available at autokeras. The system runs in parallel on CPU and GPU, with an adaptive search strategy for different GPU memory limits. |
关 键 词: | Auto-Keras; 大数据科学; 神经结构搜索系统 |
课程来源: | 视频讲座网 |
数据采集: | 2022-09-16:cyh |
最后编审: | 2022-09-19:cyh |
阅读次数: | 64 |