0


为客户服务自动生成对话摘要

Automatic Dialogue Summary Generation for Customer Service
课程网址: http://videolectures.net/kdd2019_liu_wang_xu/  
主讲教师: Peng Wang
开课单位: 滴滴出行科技有限公司
开课时间: 2020-03-02
课程语种: 英语
中文简介:
对话摘要从对话中提取有用的信息。它有助于人们快速捕捉对话的重点,而无需经过冗长且有时扭曲的话语。对于客户服务,它节省了目前编写对话摘要所需的人力资源。对话摘要的一个主要挑战是设计一种机制来确保摘要的逻辑性、完整性和正确性。本文引入辅助关键点序列来解决这个问题。关键点序列描述了总结的逻辑。在我们的培训程序中,关键点序列充当辅助标签。它有助于模型学习总结的逻辑。在预测过程中,我们的模型首先预测关键点序列,然后用它来指导摘要的预测。结合辅助关键点序列,我们提出了一种新的Leader-Writer网络。Leader网预测关键点序列,Writer网根据解码的关键点序列预测摘要。Leader网络可确保总结的逻辑性和完整性。作家网专注于生成流畅的句子。我们在客户服务场景中测试我们的模型。结果表明,我们的模型不仅在BLEU和ROUGE-L分数上优于其他模型,而且在逻辑性和完整性上也优于其他模型。
课程简介: Dialogue summarization extracts useful information from a dialogue. It helps people quickly capture the highlights of a dialogue without going through long and sometimes twisted utterances. For customer service, it saves human resources currently required to write dialogue summaries. A main challenge of dialogue summarization is to design a mechanism to ensure the logic, integrity, and correctness of the summaries. In this paper, we introduce auxiliary key point sequences to solve this problem. A key point sequence describes the logic of the summary. In our training procedure, a key point sequence acts as an auxiliary label. It helps the model learn the logic of the summary. In the prediction procedure, our model predicts the key point sequence first and then uses it to guide the prediction of the summary. Along with the auxiliary key point sequence, we propose a novel Leader-Writer network. The Leader net predicts the key point sequence, and the Writer net predicts the summary based on the decoded key point sequence. The Leader net ensures the summary is logical and integral. The Writer net focuses on generating fluent sentences. We test our model on customer service scenarios. The results show that our model outperforms other models not only on BLEU and ROUGE-L score but also on logic and integrity.
关 键 词: 为客户服务自动生成; 数据科学; 生成对话摘要
课程来源: 视频讲座网
数据采集: 2022-09-16:cyh
最后编审: 2022-09-19:cyh
阅读次数: 32