0


使用端到端多任务学习模型的Naranjo问答

Naranjo Question Answering using End-to-End Multi-task Learning Model
课程网址: http://videolectures.net/kdd2019_rawat_yu_naranjo/  
主讲教师: Bhanu Pratap Singh Rawat
开课单位: 马萨诸塞大学阿默斯特分校
开课时间: 2020-03-02
课程语种: 英语
中文简介:
在临床领域,了解药物不良反应(ADR)是否由特定药物引起是很重要的。临床判断研究有助于判断药物与其ADR之间的因果关系。在本研究中,我们首次尝试通过回答Naranjo问卷(领域专家用于ADR因果关系评估的经验证的临床问答集),从电子健康记录(EHR)中自动推断药物与ADR之间的因果关系。使用医生注释作为金标准,我们提出的联合模型使用多任务学习来预测Naranjo问卷子集的答案,该模型显著优于基线管道模型,具有良好的优势,获得了0.3652-0.5271之间的宏观加权f分数和0.9523-0.9918之间的微观加权f分数。
课程简介: In the clinical domain, it is important to understand whether an adverse drug reaction (ADR) is caused by a particular medication. Clinical judgement studies help judge the causal relation between a medication and its ADRs. In this study, we present the first attempt to automatically infer the causality between a drug and an ADR from electronic health records (EHRs) by answering the Naranjo questionnaire, the validated clinical question answering set used by domain experts for ADR causality assessment. Using physicians’ annotation as the gold standard, our proposed joint model, which uses multi-task learning to predict the answers of a subset of the Naranjo questionnaire, significantly outperforms the baseline pipeline model with a good margin, achieving a macro-weighted f-score between 0.3652-0.5271 and micro-weighted f-score between 0.9523-0.9918.
关 键 词: 使用端到端多任务学习; 多任务学习模型; Naranjo问答
课程来源: 视频讲座网
数据采集: 2022-09-19:cyh
最后编审: 2022-09-19:cyh
阅读次数: 34