用于关系抽取的潜在关系模型Latent Relational Model for Relation Extraction |
|
课程网址: | http://videolectures.net/eswc2019_rossiello_latent_relational/ |
主讲教师: | Gaetano Rossiello |
开课单位: | 巴里大学计算机科学系 |
开课时间: | 2019-12-10 |
课程语种: | 英语 |
中文简介: | 类比是我们思考和处理思维方式的基本组成部分。解决单词类比问题,如“石匠是石头,木匠是木头”,需要有识别两个单词对之间隐含关系的能力。在本文中,我们从计算语言学的角度描述了类比问题,并探讨了它在处理关系提取任务中的用途。我们扩展了一个关系模型,该模型已被证明在解决单词类比方面有效,并将其应用于关系提取问题。我们的实验表明,在关系提取数据集上,该方法优于最新的方法,为通过类比推理发现文本中的隐含关系开辟了一个新的研究方向。 |
课程简介: | Analogy is a fundamental component of the way we think and process thought. Solving a word analogy problem, such as mason is to stone as carpenter is to wood, requires capabilities in recognizing the implicit relations between the two word pairs. In this paper, we describe the analogy problem from a computational linguistics point of view and explore its use to address relation extraction tasks. We extend a relational model that has been shown to be effective in solving word analogies and adapt it to the relation extraction problem. Our experiments show that this approach outperforms the state-of-the-art methods on a relation extraction dataset, opening up a new research direction in discovering implicit relations in text through analogical reasoning. |
关 键 词: | 语义网; 联合机器学习; 工程和管理见解; 关系提取问题; 类比推理发现文本; 关系提取数据集 |
课程来源: | 视频讲座网 |
数据采集: | 2022-09-20:cyh |
最后编审: | 2022-09-21:cyh |
阅读次数: | 15 |