远程监控关系提取的混合图模型A Hybrid Graph Model for Distant Supervision Relation Extraction |
|
课程网址: | http://videolectures.net/eswc2019_gao_hybrid_graph/ |
主讲教师: | Huan Gao |
开课单位: | 哈佛大学 |
开课时间: | 2019-09-19 |
课程语种: | 英语 |
中文简介: | 远程监控的优点是通过将知识图中的三元组与大规模语料库对齐,自动生成用于关系提取的训练数据。最近的一些方法试图结合额外的信息来提高关系提取的性能。然而,仍然存在两大局限性。首先,这些方法是为特定类型的信息量身定制的,这些信息不足以涵盖大多数情况。其次,引入的额外信息可能包含噪声。为了解决这些问题,我们提出了一种新的混合图模型,它可以在一个统一的框架中包含异构背景信息,例如实体类型和人工构造的三元组。即使有几个缺失的案例,这些不同类型的知识也可以有效地整合。此外,我们还采用了一种注意机制来识别最有信心的信息,以减轻噪声的副作用。实验结果表明,我们的模型在各种评估指标上都明显优于最先进的方法。 |
课程简介: | Distant supervision has advantages of generating training data automatically for relation extraction by aligning triples in Knowledge Graphs with large-scale corpora. Some recent methods attempt to incorporate extra information to enhance the performance of relation extraction. However, there still exist two major limitations. Firstly, these methods are tailored for a specific type of information which is not enough to cover most of the cases. Secondly, the introduced extra information may contain noise. To address these issues, we propose a novel hybrid graph model, which can incorporate heterogeneous background information in a unified framework, such as entity types and human-constructed triples. These various kinds of knowledge can be integrated efficiently even with several missing cases. In addition, we further employ an attention mechanism to identify the most confident information which can alleviate the side effect of noise. Experimental results demonstrate that our model outperforms the state-of-the-art methods significantly in various evaluation metrics. |
关 键 词: | 远程监控关系提取; 混合图模型; 语义网; 大规模语料库对齐; 混合图模型 |
课程来源: | 视频讲座网 |
数据采集: | 2022-09-20:cyh |
最后编审: | 2022-09-21:cyh |
阅读次数: | 25 |