0


检索知识图事实的文本证据

Retrieving Textual Evidence for Knowledge Graph Facts
课程网址: http://videolectures.net/eswc2019_ercan_textual_evidence/  
主讲教师: Gonenc Ercan
开课单位: 比尔肯大学
开课时间: 2019-09-16
课程语种: 英语
中文简介:
知识图已经成为语义搜索的重要资源,并为用户的信息需求提供准确的答案。知识图通常由数十亿个事实组成,通常以RDF三元组的形式编码。在大多数情况下,这些事实是自动提取的,因此容易出错。因此,对于许多应用程序来说,用文本证据补充知识图形事实是非常有用的。例如,它可以帮助用户对作为查询答案的一部分返回的事实的有效性做出明智的决定。因此,在本文中,我们提出了在新窗口中打开图像,这是一种给定知识图和文本语料库的方法,用于检索给定事实集的top-k最相关的文本段落。由于我们的目标是检索短文,因此我们开发了一组IR模型,将Okapi BM25模型的精确匹配与单词嵌入的语义匹配相结合。为了评估我们的方法,我们建立了一个广泛的基准,包括从YAGO中提取的事实和从维基百科中检索的文本。我们的实验结果证明了我们的方法在检索知识图事实的文本证据方面的有效性。
课程简介: Knowledge graphs have become vital resources for semantic search and provide users with precise answers to their information needs. Knowledge graphs often consist of billions of facts, typically encoded in the form of RDF triples. In most cases, these facts are extracted automatically and can thus be susceptible to errors. For many applications, it can therefore be very useful to complement knowledge graph facts with textual evidence. For instance, it can help users make informed decisions about the validity of the facts that are returned as part of an answer to a query. In this paper, we therefore propose Open image in new window, an approach that given a knowledge graph and a text corpus, retrieves the top-k most relevant textual passages for a given set of facts. Since our goal is to retrieve short passages, we develop a set of IR models combining exact matching through the Okapi BM25 model with semantic matching using word embeddings. To evaluate our approach, we built an extensive benchmark consisting of facts extracted from YAGO and text passages retrieved from Wikipedia. Our experimental results demonstrate the effectiveness of our approach in retrieving textual evidence for knowledge graph facts.
关 键 词: 文本证据; 检索知识图事实; 语义网; Okapi BM25模型; 单词嵌入的语义匹配
课程来源: 视频讲座网
数据采集: 2022-09-21:cyh
最后编审: 2022-09-21:cyh
阅读次数: 11