0


通过使用正面和负面的模式序列分类在社会保障债务检测

Debt Detection in Social Security by Sequence Classification Using Both Positive and Negative Patterns
课程网址: http://videolectures.net/ecmlpkdd09_zhao_ddss/  
主讲教师: Yanchang Zhao
开课单位: 悉尼科技大学
开课时间: 2009-10-20
课程语种: 英语
中文简介:
债务检测对于提高社会保障的支付准确性非常重要。由于来自客户交易数据的债务检测通常可以被建模为欺诈检测问题,因此直接的解决方案是从交易序列中提取特征并构建债务的序列分类器。基于序列模式的现有序列分类方法仅考虑正模式。但是,根据我们在大型社会保障应用中的经验,负面模式在准确的债务检测中非常有用。在本文中,我们提出了一个成功的大型社会保障应用中的债务检测案例研究。中心技术是使用正序和负序模式构建序列分类。
课程简介: Debt detection is important for improving payment accuracy in social security. Since debt detection from customer transactional data can be generally modelled as a fraud detection problem, a straightforward solution is to extract features from transaction sequences and build a sequence classifier for debts. The existing sequence classification methods based on sequential patterns consider only positive patterns. However, according to our experience in a large social security application, negative patterns are very useful in accurate debt detection. In this paper, we present a successful case study of debt detection in a large social security application. The central technique is building sequence classification using both positive and negative sequential patterns.
关 键 词: 债务检测; 交易序列特征; 社会保障付款
课程来源: 视频讲座网
最后编审: 2020-06-29:yumf
阅读次数: 40