0


灵活的定量构效关系:功能机计算化学学习

Flexible QSAR: functional machine learning in computational chemistry
课程网址: http://videolectures.net/ecmlpkdd2010_belda_ip/  
主讲教师: Ignasi Belda
开课单位: 智能制药公司
开课时间: 2010-11-16
课程语种: 英语
中文简介:
QSAR(定量构效关系)建模是药物发现中的常见步骤。 QSAR方法使用统计学和机器学习工具来绘制候选药物(分子)的分子结构与其生物学特征之间的重要关系。为了实现这一目标,研究人员通常会描述具有物理化学性质阵列的分子,例如总分子电荷,分子量,氢键供体数量等。然而,QSAR中统计和机器学习工具的预测准确性有通常非常低,需要更先进的工具来实现QSAR药物发现过程的更高使用程度。出于这个原因,在Intelligent Pharma,我们一直在研究功能数据挖掘领域,即通过功能描述的信息的数据挖掘,而不仅仅是固定属性。通过使用功能数据挖掘方法,我们可以处理物理化学参数,例如分子的体积,这是一个可变的属性,根据系统的能量和灵活性而变化。因此,通过在QSAR和药物发现领域中使用这些方法,可以建立更准确的预测模型。本研究中使用的机器学习工具是支持向量机。
课程简介: QSAR (Quantitative Structure-Activity Relationship) modelling is a usual step in drug discovery. QSAR methods use statistical and machine learning tools to draw out the significant relationships between the molecular structure of the drug candidates (the molecules) and its biological profile. To achieve such a goal, researchers usually describe the molecules with arrays of physico-chemical properties, such as total molecular charge, molecular weight, number of hydrogen bonds donors, etc. However, the predictive accuracy of statistical and machine learning tools in QSAR have been typically very low and more advanced tools are needed to achieve higher degrees of usage of QSAR drug discovery processes. For such a reason, at Intelligent Pharma, we have been researching in the field of functional data mining, that is, data mining of information described through functions, not only with fixed properties. By using functional data mining approaches, we can deal with physico-chemical parameters such as the volume of the molecules, which is a variable property that varies depending on the energy of the system and its flexibility. Therefore, more accurate predictive models can be built by using these approaches in the field of QSAR and drug discovery. The machine learning tool used in this research is support vector machines.
关 键 词: 定量结构活性关系; 候选药物的分子结构; 功能描述数据挖掘
课程来源: 视频讲座网
最后编审: 2020-06-27:zyk
阅读次数: 69