0


变革性机器学习:显性优于隐性

Transformative Machine Learning: Explicit is Better than Implicit
课程网址: http://videolectures.net/icgeb_king_machine_learning/  
主讲教师: Ross D. King
开课单位: 曼彻斯特大学计算机科学学院
开课时间: 2019-06-28
课程语种: 英语
中文简介:
机器学习(ML)成功的关键是使用有效的数据表示。以前,ML只适用于孤立的问题。现在,随着数据的可用性不断增加,ML正被应用于大量相关问题。在多任务ML和传输ML中,利用相关问题来提高ML性能。我和我的同事开发了变革性学习(TL):一种针对相关问题集的新颖通用ML表示。TL具有提高ML性能和实现可解释预测的双重优势。基本的新思想是基于预训练模型的预测将标准数据表示转换为显式表示。我们使用四种最重要的非线性ML方法评估了TL:随机森林、支持向量机、k近邻和神经网络;关于三个现实世界的科学问题领域:药物设计、预测基因表达和元机器学习。TL在所有三个领域显著提高了所有四种ML方法的预测性能。TL的一个有价值的副产品是预测模型的大规模生产。我们将这些模型应用于通过功能相似性对药物靶点/基因和药物进行聚类。我们还利用它们进行了大规模的药物活性预测和基因活性预测。
课程简介: The key to success in machine learning (ML) is the use of effective data representations. Formerly, ML was only applied to isolated problems. Now, with the ever-increasing availability of data, ML is being applied to large sets of related problems. In multi-task ML, and transfer ML, related problems are exploited to improve ML performance. My colleagues and I have developed transformative learning (TL): a novel and general ML representation for sets of related problems. TL has the dual advantages of improving ML performance, and enabling explainable predictions. The fundamental new idea is to transform standard data representations into an explicit representation based on the predictions of pre-trained models. We have evaluated TL using the four most important non-linear ML methods: random forests, support-vector machines, k-nearest neighbour, and neural-networks; on three real-world scientific problem areas: drug-design, predicting gene expression, and meta machine-learning. TL significantly improved the predictive performance of all four ML methods in all three areas. A valuable side-product of TL is the large-scale production of prediction models. We applied these models to cluster drug-targets/genes and drugs by functional similarity. We also used them to make large-scale drug-activity predictions, and gene-activity predictions.
关 键 词: 变革性机器学习; 数据科学; 转换学习; 大规模生产预测模型; 基因活性预测; 大规模药物活性预测
课程来源: 视频讲座网
数据采集: 2022-10-13:cyh
最后编审: 2022-11-29:liyy
阅读次数: 46