元QSAR和多任务QSAR学习Meta-QSAR and Multi-Task QSAR Learning |
|
课程网址: | http://videolectures.net/icgeb_soldatova_multi_task_qsar_learning... |
主讲教师: | Larisa Soldatova |
开课单位: | 伦敦大学金匠学院 |
开课时间: | 2019-06-28 |
课程语种: | 英语 |
中文简介: | Larisa将介绍EPSRC(英国工程与物理科学研究委员会)资助的meta QSAR项目的结果(“学习如何设计药物”EP/K030469/1,EP/K0030582/1)。尽管几乎所有类型的机器学习方法都已应用于QSAR学习,但没有公认的学习QSAR的最佳方法。研究人员项目团队对QSAR学习的机器学习方法进行了有史以来最全面的比较:18种回归方法,6种分子表示,应用于2700多个QSAR问题。然后,他们研究了QSAR问题算法选择的效用。他们发现,这种元学习方法平均比最佳个体QSAR学习方法(即使用分子指纹表示的随机森林)好13%。它为元学习相对于基础学习的一般有效性提供了证据。元QSAR项目团队还采用了多任务学习(MTL)来开发药物靶点和分析的共性。他们分析了ChEMBL提供的数千种分析方法。他们进行了基于特征和基于实例的MTL来预测药物活性。此外,他们引入了药物靶点之间进化距离的自然度量,作为任务相关性的度量。MTL研究的结果与单任务学习的结果进行了比较,随机森林是表现最好的QSAR学习者。结果是:基于实例的MTL显著优于基于特征的MTL和基础学习者。通过合并目标之间的进化距离,MTL显著提高。元QSAR项目的结果已在OpenML平台上公开。 |
课程简介: | Larisa will present the results of the meta-QSAR project funded by EPSRC (Engineering and Physical Sciences Research Council UK) (‘learning to learn how to design drugs’ EP/K030469/1, EP/K030582/1). Although almost every type of machine learning method has been applied to QSAR learning there is no agreed single best way of learning QSARs. The project team of researchers carried out the most comprehensive ever comparison of machine learning methods for QSAR learning: 18 regression methods, 6 molecular representations, applied to more than 2,700 QSAR problems. They then investigated the utility of algorithm selection for QSAR problems. They found that such a meta-learning approach outperformed the best individual QSAR learning method (i.e. random forests using a molecular fingerprint representation) by up to 13%, on average. It provides evidence for the general effectiveness of meta-learning over base-learning. The meta-QSAR project team also employed multi-task learning (MTL) to exploit commonalities in drug targets and assays. They analysed over a thousands of assay provided by ChEMBL. They carried out feature-based and instance-based MTL to predict drug activities. In addition, they introduced a natural metric of evolutionary distance between drug targets as a measure of tasks relatedness. The results of MTL studies were compared with the results of a single task learning, a random forest as the best performing QSAR learner. The results are: instance-based MTL significantly outperformed both, feature-based MTL and the base learner. MTL was significantly improved by incorporating the evolutionary distance between targets. The results of the meta-QSAR project have been made publicly available on OpenML platform. |
关 键 词: | 元QSAR; 数据科学; 多任务QSAR学习; meta QSAR项目; QSAR学习的机器学习方法; 开发药物靶点和分析的共性 |
课程来源: | 视频讲座网 |
数据采集: | 2022-10-14:cyh |
最后编审: | 2022-10-14:cyh |
阅读次数: | 54 |