基于核的药物蛋白结合亲和力预测模型Kernel-based predictive modelling of drug-protein binding affinities |
|
课程网址: | http://videolectures.net/icgeb_cichonska_protein_binding_affiniti... |
主讲教师: | Anna Cichonska |
开课单位: | 阿尔托大学 |
开课时间: | 2019-09-19 |
课程语种: | 英语 |
中文简介: | 尽管多年来发现了基于靶点的药物,但抑制单个靶点的化学制剂仍然很少。因此,绘制药物和类药物化合物的完整蛋白质靶空间,包括预期的“主要靶点”和次要的“非靶点”,是药物发现工作的关键部分。这样的图谱不仅可以探索化学制剂的治疗潜力,还可以在临床试验之前更好地预测和管理其可能的不良反应。然而,化学世界的巨大规模使得对化合物-靶相互作用的整个空间的实验生物活性绘图在实践中很快变得不可行,即使使用现代高通量分析方法也是如此。机器学习方法为实验药物生物活性分析提供了一种成本效益高的补充方法,允许优先选择最有效的候选药物和蛋白质靶相互作用,以便在实验室进行进一步验证。最近,特别是基于核的方法在药理学中受到了极大的关注,尤其是在化学和蛋白质特征与药物生物活性之间的非线性的计算效率建模方面。本讲座将介绍核学习的概念,并演示如何使用核来模拟药物-蛋白质相互作用。我们将侧重于定量结合亲和力预测,以充分表征药物的活性谱。在讲座结束时,我们还将总结“照亮可药基因组(IDG)-DREAM药物激酶结合预测挑战”的结果。 |
课程简介: | Despite several years of target-based drug discovery, chemical agents inhibiting single targets are still rare. Mapping the complete protein target space of drugs and drug-like compounds, including both intended “primary targets” as well as secondary “off-targets”, is therefore a critical part of drug discovery efforts. Such a map would enable one not only to explore the therapeutic potential of chemical agents but also to better predict and manage their possible adverse effects prior to clinical trials. However, the massive size of the chemical universe makes experimental bioactivity mapping of the full space of compound-target interactions quickly infeasible in practice, even with the modern high-throughput profiling assays. Machine learning methods provide a cost-effective and complementary approach to experimental drug bioactivity profiling, allowing for prioritization of the most potent drug candidates and protein target interactions for further verification in the laboratory. Recently, especially kernel-based methods have received significant attention in pharmacology offering, among others, the advantage of computationally efficient modelling of the nonlinearities between chemical and protein features and drug bioactivity profiles. This lecture will introduce the concept of kernel learning and demonstrate how kernels can be used to model drug-protein interactions. We will focus on quantitative binding affinity prediction in order to fully characterize the activity spectrum of a drug. At the end of the lecture, we will also go through the summary of the results from the Illuminating the Druggable Genome (IDG)-DREAM Drug-Kinase Binding Prediction Challenge. |
关 键 词: | 基于核的药物蛋白结合; 数据科学; 亲和力预测模型; 基于靶点的药物 |
课程来源: | 视频讲座网 |
数据采集: | 2022-10-14:cyh |
最后编审: | 2022-10-14:cyh |
阅读次数: | 30 |