从大规模公共数据集构建化学组学模型并将其应用于工业数据集Building Chemogenomics Models from a Large-Scale Public Dataset and Applying them to Industrial Datasets |
|
课程网址: | http://videolectures.net/icgeb_sturm_chemogenomics_models/ |
主讲教师: | Noé Sturm |
开课单位: | 阿斯利康制药有限公司 |
开课时间: | 2019-06-28 |
课程语种: | 英语 |
中文简介: | ExCAPE是一个由欧洲资助的项目,旨在利用超级计算机的力量来加速药物发现([url]). 多亏了项目团队,我们才有机会从公共数据库中构建用于复合活动预测的大规模机器学习模型,并将其应用于工业数据集。在这次演讲中,我将介绍从公共资源收集化学基因组学数据以构建基准数据集的过程。随后,我将解释使用多任务深度学习和矩阵分解算法构建模型并评估其性能的过程。最后,我将展示这些模型是如何应用于工业数据集的。 |
课程简介: | ExCAPE was a European funded project aiming at harvesting the power of supercomputers to speed up drug discovery. Thanks to the project team, we were given the amazing opportunity to build large-scale machine learning models for compound activity predictions from public databases and to apply them to industrial datasets. In this talk, I will present the process of collecting chemogenomics data from public resources to build a benchmark dataset. Subsequently, I will explain the process of building and evaluating the performance of models built with multi-task deep learning and matrix factorization algorithms. Ultimately, I will show how these models were applied to industrial datasets. |
关 键 词: | 大规模公共数据集; 数据科学; 构建化学组学模型; 应用于工业数据集 |
课程来源: | 视频讲座网 |
数据采集: | 2022-10-14:cyh |
最后编审: | 2022-10-14:cyh |
阅读次数: | 29 |