0


流形值狄利克雷过程

Manifold-valued Dirichlet Processes
课程网址: http://videolectures.net/icml2015_kim_dirichlet_processes/  
主讲教师: Hyunwoo J. Kim
开课单位: 威斯康星大学
开课时间: 2015-12-05
课程语种: 英语
中文简介:
流形值数据的统计模型允许捕获数据所在的弯曲空间的内在性质,这是几十年来的一个研究主题。通常,这些公式在大多数情况下使用测地线曲线和局部定义的距离——这使得在光滑流形上设计全局参数模型变得困难。因此,目前可用的大多数(流形特定)参数模型假设数据位于流形上的一个小邻域内。为了解决这一“局域性”问题,我们提出了一种新的非参数模型,该模型使用多个切线空间将多元一般线性模型(MGLMs)统一起来。我们的框架概括了现有的关于(欧几里德和非欧几里德)一般线性模型的工作,提供了全局扩展局部定义参数模型的方法(使用局部模型的混合)。通过将观测分组到多个切线空间的子种群中,我们的方法提供了对数据中的隐藏结构(测地线关系)的洞察。这产生了一个框架来对观察进行组合,并发现协变量X和流形值响应Y之间的测地关系,我们称之为黎曼流形上多元通用线性模型(DP-MGLM)的狄利克雷过程混合物。最后,通过概念实验验证了模型的有效性。
课程简介: Statistical models for manifold-valued data permit capturing the intrinsic nature of the curved spaces in which the data lie and have been a topic of research for several decades. Typically, these formulations use geodesic curves and distances defined locally for most cases – this makes it hard to design parametric models globally on smooth manifolds. Thus, most (manifold specific) parametric models available today assume that the data lie in a small neighborhood on the manifold. To address this ‘locality’ problem, we propose a novel nonparametric model which unifies multivariate general linear models (MGLMs) using multiple tangent spaces. Our framework generalizes existing work on (both Euclidean and non-Euclidean) general linear models providing a recipe to globally extend the locally-defined parametric models (using a mixture of local models). By grouping observations into sub-populations at multiple tangent spaces, our method provides insights into the hidden structure (geodesic relationships) in the data. This yields a framework to group observations and discover geodesic relationships between covariates X and manifold-valued responses Y, which we call Dirichlet process mixtures of multivariate general linear models (DP-MGLM) on Riemannian manifolds. Finally, we present proof of concept experiments to validate our model.
关 键 词: 统计模型; 流行值数据; 黎曼流形
课程来源: 视频讲座网
数据采集: 2022-11-01:chenjy
最后编审: 2022-11-01:chenjy
阅读次数: 44