0


计算化学的深度学习:复合表示、ADMET剖面和自动优化

Deep learning for computational chemistry: compound representation, ADMET profiles and automatic optimization
课程网址: http://videolectures.net/icgeb_montanari_computational_chemistry/  
主讲教师: Floriane Montanari
开课单位: 拜耳公司
开课时间: 2019-06-28
课程语种: 英语
中文简介:
小分子药物发现的主要挑战之一是有效地寻找具有理想性质的新化合物。这些性质可以是理化性质(如logD或溶解度)、药代动力学性质(如渗透性、清除率或代谢稳定性)或药效学性质(如感兴趣靶点的生物活性)。计算化学长期以来一直参与药物发现过程,从打击选择到先导优化。在硅的方法允许快速和经济的过滤步骤之前,化学物质甚至合成。在这里,我们将讨论深度学习如何用于化学建模的许多不同方面。在化学信息学中,第一步是以计算机可读的方式描述化学物质。我们提出了常用圆形指纹的两种替代方案:分子图上的图卷积和SMILES符号上的序列对序列自动编码器。然后,我们演示了如何将不同的ADMET端点组合在一个多任务深度学习模型中,与单任务替代方案相比,可以提高预测性能,特别是在更难建模的端点上。最后,将我们对化学空间的可逆编码与改进的预测模型和优化算法相结合,我们演示了如何根据多个(预测的)分子属性对查询化合物进行优化。我们希望通过提出合成思路和处理多目标优化,为药物化学家加速和改进先导优化过程提供支持。
课程简介: One of the main challenges in small molecule drug discovery is efficiently finding novel chemical compounds with desirable properties. Such properties can be physico-chemical (like logD or solubility), pharmacokinetic (like permeability, clearance or metabolic stability) or pharmacodynamic (like biological activity on targets of interest). Computational chemistry has since long been involved in the drug discovery process from hit selection to lead optimization. In silico methods allow for fast and cost-effective filtering steps before the chemical matter is even synthesized. Here, we discuss how deep learning can be utilized for many different aspects of modeling in chemistry. In cheminformatics, the first step is to describe the chemical matter in a computer-readable way. We present two alternatives to the commonly applied circular fingerprints: graph convolutions on the molecular graph and a sequence-to-sequence autoencoder on SMILES notations. We then demonstrate how combining different ADMET endpoints together in one multitask deep learning model can boost the predictive performance compared to its single-task alternatives, especially on endpoints that are more difficult to model. Finally, combining our reversible encoding of the chemical space with improved predictive models and an optimization algorithm, we demonstrate how a query compound can be optimized with respect to multiple (predicted) molecular properties. We hope that our method will support medicinal chemists in accelerating and improving the lead optimization process by proposing synthesis ideas and handling multi-objective optimization.
关 键 词: 理化性质; 化学建模; 分子属性; 计算化学
课程来源: 视频讲座网
数据采集: 2022-11-02:chenjy
最后编审: 2023-05-13:chenjy
阅读次数: 36