正则稀疏核慢特征分析Regularized Sparse Kernel Slow Feature Analysis |
|
课程网址: | http://videolectures.net/ecmlpkdd2011_boehmer_regularized/ |
主讲教师: | Wendelin Böhmer |
开课单位: | 第六电气工程学院 |
开课时间: | 2011-10-03 |
课程语种: | 英语 |
中文简介: | 本文开发了一种核心化慢特征分析(SFA)算法。 SFA是一种无监督学习方法,用于从时间序列中提取编码潜在变量的特征。生成关系通常很复杂,而且当前的算法要么不够强大,要么过于贴切。我们将核心技巧与稀疏化相结合,为大型数据集提供了强大的函数类。稀疏性是通过一种新颖的匹配追踪方法实现的,该方法也可以应用于其他任务。然而,对于小而复杂的数据集,核SFA方法会导致过拟合和数值不稳定。为了实施稳定的解决方案,我们将正规化引入SFA目标。我们的方法的多功能性和性能在音频和视频数据集上得到了证明。 |
课程简介: | This paper develops a kernelized slow feature analysis (SFA) algorithm. SFA is an unsupervised learning method to extract features which encode latent variables from time series. Generative relationships are usually complex, and current algorithms are either not powerful enough or tend to over-fit. We make use of the kernel trick in combination with sparsification to provide a powerful function class for large data sets. Sparsity is achieved by a novel matching pursuit approach that can be applied to other tasks as well. For small but complex data sets, however, the kernel SFA approach leads to over-fitting and numerical instabilities. To enforce a stable solution, we introduce regularization to the SFA objective. Versatility and performance of our method are demonstrated on audio and video data sets. |
关 键 词: | 核慢特征分析(SFA)算法; 时间序列特征; 稀疏核技巧 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-24:yumf |
阅读次数: | 121 |