高斯过程点过程的可扩展非参数贝叶斯推断Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes |
|
课程网址: | http://videolectures.net/icml2015_kom_samo_gaussian_processes/ |
主讲教师: | Yves-Laurent Kom Samo |
开课单位: | 牛津曼定量金融研究所 |
开课时间: | 2015-12-05 |
课程语种: | 英语 |
中文简介: | 在本文中,我们提出了一种有效的、可扩展的非参数高斯过程模型,用于泊松点过程的推理。我们的模型不采用网格化域或引入潜在稀疏点。与在n个数据点上缩放为O(n3)的竞争模型不同,我们的模型具有复杂性O(nk2),其中k< |
课程简介: | In this paper we propose an efficient, scalable non-parametric Gaussian process model for inference on Poisson point processes. Our model does not resort to gridding the domain or to introducing latent thinning points. Unlike competing models that scale as O(n3) over n data points, our model has a complexity O(nk2) where k << n. We propose a MCMC sampler and show that the model obtained is faster, more accurate and generates less correlated samples than competing approaches on both synthetic and real-life data. Finally, we show that our model easily handles data sizes not considered thus far by alternate approaches. |
关 键 词: | 非参数高斯过程; 竞争模型; 泊松点过程 |
课程来源: | 视频讲座网 |
数据采集: | 2022-11-06:chenjy |
最后编审: | 2022-11-06:chenjy |
阅读次数: | 52 |