0


知识引导的注意和推理描述图像包含看不见的物体

Knowledge Guided Attention and Inference for Describing Images Containing Unseen Objects
课程网址: http://videolectures.net/eswc2018_rettinger_unseen_objects/  
主讲教师: Achim Rettinger
开课单位: 卡尔斯鲁厄理工学院
开课时间: 2018-07-10
课程语种: 英语
中文简介:
Web上的图像封装了关于各种抽象概念的各种知识。从只提到少量视觉对象类别的图像标题对中学习的模型无法充分描述它们。相比之下,大规模知识图包含更多可以被图像识别模型检测到的概念。因此,为了帮助那些包含在图像-标题对中看不到的可视对象的图像生成描述,我们提出了一个利用大规模知识图的两步过程。第一步,建立多实体识别模型,对标题中未提及的概念进行标注。第二步,利用这些注释作为图像描述生成模型中的外部语义注意和约束推理。评估结果表明,我们的模型在域外MSCOCO图像描述生成方面优于大多数之前的工作,并且可以更好地扩展到具有更多不可见对象的广阔域。
课程简介: Images on the Web encapsulate diverse knowledge about varied abstract concepts. They cannot be sufficiently described with models learned from image-caption pairs that mention only a small number of visual object categories. In contrast, large-scale knowledge graphs contain many more concepts that can be detected by image recognition models. Hence, to assist description generation for those images which contain visual objects unseen in image-caption pairs, we propose a two-step process by leveraging large-scale knowledge graphs. In the first step, a multi-entity recognition model is built to annotate images with concepts not mentioned in any caption. In the second step, those annotations are leveraged as external semantic attention and constrained inference in the image description generation model. Evaluations show that our models outperform most of the prior work on out-of-domain MSCOCO image description generation and also scales better to broad domains with more unseen objects.
关 键 词: 抽象概念; 实体识别模型; 外部语义; 约束推理
课程来源: 视频讲座网
数据采集: 2022-11-10:chenjy
最后编审: 2022-11-10:chenjy
阅读次数: 24