0


疾病进展模型的无监督学习

Unsupervised Learning of Disease Progression Models
课程网址: http://videolectures.net/kdd2014_sontag_disease_progression/  
主讲教师: David Sontag
开课单位: 纽约大学
开课时间: 2014-10-08
课程语种: 英语
中文简介:
慢性疾病,如阿尔茨海默病、糖尿病和慢性阻塞性肺病,通常在很长一段时间内进展缓慢,给患者、其家人和医疗系统造成了越来越大的负担。更好地了解其进展有助于早期诊断和个性化护理。由于观察结果的不完整性和不规则性以及患者病情的异质性,基于真实世界证据对疾病进展进行建模是一项极具挑战性的任务。在本文中,我们提出了一种解决这些挑战的概率疾病进展模型。与现有的疾病进展模型相比,我们的模型有三个优点:1)它从非等间隔的离散时间观察中学习连续的时间进展模型;2) 它从仅覆盖进程的短片段的一组不完整记录中学习完整进程轨迹;3) 它学习了一组紧凑的医学概念,作为隐藏的进展过程和观察到的医学证据之间的桥梁,这些证据通常非常稀疏和嘈杂。我们通过将其应用于真实世界的COPD患者队列并得出一些有趣的临床见解,证明了我们模型的能力。
课程简介: Chronic diseases, such as Alzheimer's Disease, Diabetes, and Chronic Obstructive Pulmonary Disease, usually progress slowly over a long period of time, causing increasing burden to the patients, their families, and the healthcare system. A better understanding of their progression is instrumental in early diagnosis and personalized care. Modeling disease progression based on real-world evidence is a very challenging task due to the incompleteness and irregularity of the observations, as well as the heterogeneity of the patient conditions. In this paper, we propose a probabilistic disease progression model that address these challenges. As compared to existing disease progression models, the advantage of our model is three-fold: 1) it learns a continuous-time progression model from discrete-time observations with non-equal intervals; 2) it learns the full progression trajectory from a set of incomplete records that only cover short segments of the progression; 3) it learns a compact set of medical concepts as the bridge between the hidden progression process and the observed medical evidence, which are usually extremely sparse and noisy. We demonstrate the capabilities of our model by applying it to a real-world COPD patient cohort and deriving some interesting clinical insights.
关 键 词: 概率疾病进展模型; 医学概念; 知识提取
课程来源: 视频讲座网
数据采集: 2022-11-10:chenjy
最后编审: 2022-12-07:liyy
阅读次数: 25