与潜在特征模型的链路预测核Kernels for Link Prediction with Latent Feature Models |
|
课程网址: | http://videolectures.net/ecmlpkdd2011_nguyen_kernels/ |
主讲教师: | Canh Hao Nguyen |
开课单位: | 日本科学技术高等研究院 |
开课时间: | 2011-10-03 |
课程语种: | 英语 |
中文简介: | 预测网络中的新链接是许多应用领域中感兴趣的问题。大多数预测方法利用网络上的实体(如节点)的信息来构建链接模型。除了具有相似性或相关性语义的网络之外,通常不使用网络结构。在这项工作中,我们使用网络结构进行链路预测,使用具有潜在特征模型的更通用的网络类型。问题是难以直接为大数据训练这些模型。我们提出了一种使用内核解决这个问题的方法,并将链路预测问题转化为二元分类问题。关键思想不是明确地推断潜在特征,而是在内核中隐式地表示这些特征,使得该方法可以扩展到大型网络。与潜在特征模型的其他方法相比,我们的方法继承了内核框架的所有优点:最优性,效率和非线性。我们将我们的方法应用于蛋白质 - 蛋白质相互作用的真实数据,以显示我们的方法的优点。 |
课程简介: | Predicting new links in a network is a problem of interest in many application domains. Most of the prediction methods utilize information on the network’s entities such as nodes to build a model of links. Network structures are usually not used except for the networks with similarity or relatedness semantics. In this work, we use network structures for link prediction with a more general network type with latent feature models. The problem is the difficulty to train these models directly for large data. We propose a method to solve this problem using kernels and cast the link prediction problem into a binary classification problem. The key idea is not to infer latent features explicitly, but to represent these features implicitly in the kernels, making the method scalable to large networks. In contrast to the other methods for latent feature models, our method inherits all the advantages of kernel framework: optimality, efficiency and nonlinearity. We apply our method to real data of protein-protein interactions to show the merits of our method. |
关 键 词: | 链接预测; 二分类问题; 潜特征模型; 内核框架 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-24:yumf |
阅读次数: | 161 |