基于策略梯度的半监督文本分类学习对抗网络Learning Adversarial Networks for Semi-Supervised Text Classification via Policy Gradient |
|
课程网址: | http://videolectures.net/kdd2018_li_semi-supervised_classificatio... |
主讲教师: | Yan Li |
开课单位: | 密歇根大学 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 半监督学习是机器学习的一个分支,旨在充分利用标记和未标记实例来提高预测性能。现代世界数据集的规模不断增长,因此为其获取信息非常困难且成本高昂。因此,深度半监督学习越来越受欢迎。大多数现有的深度半监督方法都是在基于生成模型的方案下构建的,其中数据分布通过输入数据结构来近似。然而,这种方案对离散数据(如文本)自然不起作用;此外,学习好的数据表示有时与学习高性能预测模型的目标相反。为了解决这类方法的问题,我们将半监督学习重新定义为基于模型的学习问题和基于自主工作的框架。所提出的框架包含两个网络:用于目标离子的预测网络和用于评估的判断网络。判断网络迭代生成适当的奖励来指导预测网络的训练,预测网络通过梯度进行训练。基于上述框架,我们提出了一种基于递归神经网络的半监督文本分类模型。我们对几个真实世界的基准文本数据集进行了全面的I分析,离子的结果表明,我们的方法优于其他同类方法。 |
课程简介: | Semi-supervised learning is a branch of machine learning techniques that aims to make fully use of both labeled and unlabeled instances to improve the prediction performance. The size of modern real world datasets is ever-growing so that acquiring label information for them is extraordinarily difficult and costly. Therefore, deep semi-supervised learning is becoming more and more popular. Most of the existing deep semi-supervised learning methods are built under the generative model based scheme, where the data distribution is approximated via input data reconstruction. However, this scheme does not naturally work on discrete data, e.g., text; in addition, learning a good data representation is sometimes directly opposed to the goal of learning a high performance prediction model. To address the issues of this type of methods, we reformulate the semi-supervised learning as a model-based reinforcement learning problem and propose an adversarial networks based framework. The proposed framework contains two networks: a predictor network for target estimation and a judge network for evaluation. The judge network iteratively generates proper reward to guide the training of predictor network, and the predictor network is trained via policy gradient. Based on the aforementioned framework, we propose a recurrent neural network based model for semi-supervised text classification. We conduct comprehensive experimental analysis on several real world benchmark text datasets, and the results from our evaluations show that our method outperforms other competing state-of-the-art methods. |
关 键 词: | 半监督学习; 离散数据; 递归神经网络 |
课程来源: | 视频讲座网 |
数据采集: | 2022-11-10:chenjy |
最后编审: | 2022-11-10:chenjy |
阅读次数: | 36 |