0


XNOR网:使用二元卷积神经网络的图像网分类

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
课程网址: http://videolectures.net/eccv2016_rastegari_neural_networks/  
主讲教师: Mohammad Rastegari
开课单位: 艾伦人工智能研究所
开课时间: 2016-10-24
课程语种: 英语
中文简介:
我们提出了标准卷积神经网络的两种有效近似:二元权值网络和xnor网络。在二元权值网络中,过滤器近似于二进制值,从而节省32倍的内存。在xnor网络中,滤波器和卷积层的输入都是二进制的。xnor网络使用主要的二进制操作近似卷积。这使得卷积运算速度提高了58倍,节省了32倍的内存。XNOR-Nets提供了在cpu(而不是gpu)上实时运行最先进网络的可能性。我们的二进制网络简单,准确,高效,并工作在具有挑战性的视觉任务。我们在ImageNet分类任务上评估我们的方法。使用二元权重网络版本的AlexNet的分类精度仅比全精度AlexNet低2.9%(在前一项测量中)。我们将我们的方法与最近的网络二值化方法(BinaryConnect和BinaryNets)进行了比较,并在ImageNet上大大超过了这些方法,在前一名的准确性上超过了16%。
课程简介: We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-Networks, the filters are approximated with binary values resulting in 32x memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in 58x faster convolutional operations and 32x memory savings. XNOR-Nets offer the possibility of running state-of-the-art networks on CPUs (rather than GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work on challenging visual tasks. We evaluate our approach on the ImageNet classification task. The classification accuracy with a Binary-Weight-Network version of AlexNet is only 2.9% less than the full-precision AlexNet (in top-1 measure). We compare our method with recent network binarization methods, BinaryConnect and BinaryNets, and outperform these methods by large margins on ImageNet, more than 16% in top-1 accuracy.
关 键 词: 二进制操作; 网络二值化方法; 标准卷积神经网络
课程来源: 视频讲座网
数据采集: 2022-11-11:chenjy
最后编审: 2022-11-11:chenjy
阅读次数: 41