0


深度递归神经网络的学习与合成

Learning to learn and compositionality with deep recurrent neural networks
课程网址: http://videolectures.net/kdd2016_de_freitas_recurrent_neural/  
主讲教师: Nando de Freitas
开课单位: 视频讲座网
开课时间: 2016-08-31
课程语种: 英语
中文简介:
深度神经网络表示在计算机视觉、语音、计算语言学、机器人、强化学习和许多其他数据丰富的领域发挥着重要作用。在这次演讲中,我将展示学习-学习和组合是处理知识转移的关键成分,以解决广泛的任务,处理小数据体系和持续学习。我将用三个例子来说明这一点:学习学习算法、神经编程和解释器以及学习交流。
课程简介: Deep neural network representations play an important role in computer vision, speech, computational linguistics, robotics, reinforcement learning and many other data-rich domains. In this talk I will show that learning-to-learn and compositionality are key ingredients for dealing with knowledge transfer so as to solve a wide range of tasks, for dealing with small-data regimes, and for continual learning. I will demonstrate this with three examples: learning learning algorithms, neural programmers and interpreters, and learning communication.
关 键 词: 神经网络; 知识转移; 持续学习; 学习算法; 神经编程
课程来源: 视频讲座网
数据采集: 2022-11-20:chenxin01
最后编审: 2023-05-18:liyy
阅读次数: 36