深度递归神经网络的学习与合成Learning to learn and compositionality with deep recurrent neural networks |
|
课程网址: | http://videolectures.net/kdd2016_de_freitas_recurrent_neural/ |
主讲教师: | Nando de Freitas |
开课单位: | 视频讲座网 |
开课时间: | 2016-08-31 |
课程语种: | 英语 |
中文简介: | 深度神经网络表示在计算机视觉、语音、计算语言学、机器人、强化学习和许多其他数据丰富的领域发挥着重要作用。在这次演讲中,我将展示学习-学习和组合是处理知识转移的关键成分,以解决广泛的任务,处理小数据体系和持续学习。我将用三个例子来说明这一点:学习学习算法、神经编程和解释器以及学习交流。 |
课程简介: | Deep neural network representations play an important role in computer vision, speech, computational linguistics, robotics, reinforcement learning and many other data-rich domains. In this talk I will show that learning-to-learn and compositionality are key ingredients for dealing with knowledge transfer so as to solve a wide range of tasks, for dealing with small-data regimes, and for continual learning. I will demonstrate this with three examples: learning learning algorithms, neural programmers and interpreters, and learning communication. |
关 键 词: | 神经网络; 知识转移; 持续学习; 学习算法; 神经编程 |
课程来源: | 视频讲座网 |
数据采集: | 2022-11-20:chenxin01 |
最后编审: | 2023-05-18:liyy |
阅读次数: | 36 |