医学成像分析、信息学和机器学习在全球健康中的应用3Medical Imaging Analytics, Informatics and Machine Learning in a Global Health Application |
|
课程网址: | http://videolectures.net/kdd2017_antani_global_health_application... |
主讲教师: | Sameer K. Antani |
开课单位: | 视频讲座网 |
开课时间: | 2017-12-01 |
课程语种: | 英语 |
中文简介: | 全球卫生挑战源于各种短缺:生物医学缺乏解决方案、不利的社会状况、缺乏资源和缺乏专门知识。虽然不是所有这些都可以由一个数据和信息学组织解决,如美国国家医学图书馆,但它可以解决这一领域的一个关键需求——使获得高质量的信息,以帮助在护理点进行诊断。这可以通过扩展其在生物医学图像分析、医疗信息学和机器学习方面的内部研究,并将其调整到最有用的地方来实现。诊断和筛查应用程序利用了多模式信息检索中使用的相同的图像分析内容理解技术,但需要加强以在基于现场的系统中使用,使其与现有医疗设备通信和信息学标准兼容,并使其具有弹性,以在资源受限的地区使用。在本次演讲中,我将介绍一个全球卫生项目的进展和面临的挑战,该项目用于对胸部x光图像进行自动图像分析,在撒哈拉以南非洲一个艾滋病毒高发农村地区进行结核病筛查。我还将介绍在将该技术推广到其他结核病流行地区时所面临的挑战,以及我们正在努力改进该技术的性能。该项目展示了如何通过计算成像科学家、放射学家和工程师的协同努力,采用多学科方法来解决长期存在的全球健康挑战。 |
课程简介: | Global health challenges arise from various shortages: lack of solutions in biomedicine, adverse social situations, lack of resources, and lack of expertise. While not all of these can be addressed by a data and informatics organization, such as the U.S. National Library of Medicine, it can address a critical need in this area – enabling access to high quality information to aid in diagnostics at the point of care. This can be achieved by extending its in-house research in biomedical image analytics, medical informatics, and machine learning, and adapting it to where it can be most useful. Diagnostics and screening applications utilize the same image analysis content understanding techniques used in multimodal information retrieval, except they need to be enhanced for use in a field-based system, made compatible with existing medical device communications and informatics standards, and made resilient for use in resource constrained regions. In this talk, I will describe the progress and challenges faced on a global health project for automated image analysis of chest x-ray images for use in screening for tuberculosis in a HIV prone rural region in sub-Saharan Africa. I will also describe challenges faced in extending the technology to other TB endemic regions and our ongoing efforts to improve its performance. The project demonstrates how a multidisciplinary approach through synergistic efforts of computational imaging scientists, radiologists, and engineers can be channeled to address a long standing global health challenge. |
关 键 词: | 全球卫生; 生物医学; 资源限制 |
课程来源: | 视频讲座网 |
数据采集: | 2022-11-25:chenxin01 |
最后编审: | 2022-11-25:chenxin01 |
阅读次数: | 50 |