0


xDeepFM:在推荐系统中结合显式和隐式特征交互

xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
课程网址: http://videolectures.net/kdd2018_lian_xDeepFM/  
主讲教师: Jianxun Lian
开课单位: 中国科学技术大学
开课时间: 2018-11-23
课程语种: 英语
中文简介:
组合特征是许多商业模式成功的关键。在网络规模的系统中,由于原始数据的种类、数量和速度,手工制作这些功能通常会带来很高的成本。基于因子分解的模型,以向量积的形式衡量相互作用,可以自动学习组合特征的模式,并将其推广到不可见的特征。随着深度神经网络(DNNs)在各个领域的巨大成功,近年来研究人员提出了几种基于DNNs的因子分解模型来学习低阶和高阶特征相互作用。尽管从数据中学习任意函数的强大能力,普通dnn在位水平上隐式地生成特征交互。在本文中,我们提出了一种新的压缩交互网络(CIN),它旨在以显式的方式在向量水平上生成特征交互。我们发现CIN与卷积神经网络(CNNs)和循环神经网络(RNNs)有一些共同的功能。我们进一步将CIN和经典DNN结合为一个统一的模型,并将该模型命名为极限深度分解机(xDeepFM)。一方面,xDeepFM能够显式学习某些有界特征交互;另一方面,它可以隐式学习任意低阶和高阶特征的相互作用。我们在三个真实世界的数据集上进行了综合实验。我们的结果表明,xDeepFM优于最先进的模型。
课程简介: Combinatorial features are essential for the success of many commercial models. Manually crafting these features usually comes with high cost due to the variety, volume and velocity of raw data in web-scale systems. Factorization based models, which measure interactions in terms of vector product, can learn patterns of combinatorial features automatically and generalize to unseen features as well. With the great success of deep neural networks (DNNs) in various fields, recently researchers have proposed several DNN-based factorization model to learn both low- and high-order feature interactions. Despite the powerful ability of learning an arbitrary function from data, plain DNNs generate feature interactions implicitly and at the bit-wise level. In this paper, we propose a novel Compressed Interaction Network (CIN), which aims to generate feature interactions in an explicit fashion and at the vector-wise level. We show that the CIN share some functionalities with convolutional neural networks (CNNs) and recurrent neural networks (RNNs). We further combine a CIN and a classical DNN into one unified model, and named this new model eXtreme Deep Factorization Machine (xDeepFM). On one hand, the xDeepFM is able to learn certain bounded-degree feature interactions explicitly; on the other hand, it can learn arbitrary low- and high-order feature interactions implicitly. We conduct comprehensive experiments on three real-world datasets. Our results demonstrate that xDeepFM outperforms state-of-the-art models. 
关 键 词: 组合特征; 商业模式; 特征交互
课程来源: 视频讲座网
数据采集: 2022-11-29:chenjy
最后编审: 2022-11-29:chenjy
阅读次数: 36