面向脑机接口的机器学习Machine Learning for Brain-Computer Interfaces |
|
课程网址: | http://videolectures.net/nips09_hill_mlb/ |
主讲教师: | Jeremy Hill |
开课单位: | 马克斯普朗克生物控制论研究所 |
开课时间: | 2010-01-19 |
课程语种: | 英语 |
中文简介: | 脑机接口(BCI)旨在成为辅助技术的终极目标:直接从大脑信号中解码用户的意图,而不涉及任何肌肉或周围神经。因此,某些类型的脑机接口可能会为瘫痪最严重的用户带来希望,例如晚期肌萎缩性侧索硬化症,目前没有其他任何类型的交流。脑机接口研究中的其他项目旨在以尽可能自然的方式恢复失去的运动功能,重新连接并在某些情况下重新训练运动皮层区域,以控制假肢或以前的瘫痪肢体。尽管脑机接口尚未在广泛临床应用方面取得突破,但在侵入性和非侵入性方面的研究和开发都在取得进展。 大脑信号的高噪声高维特性,特别是在非侵入性方法和患者群体中,使得鲁棒解码技术成为必要。通常,该方法使用相对简单的特征提取技术,例如模板匹配和频带功率估计,并结合简单的线性分类器。这导致了应用BCI研究人员普遍认为,(复杂的)机器学习是无关紧要的,因为“一旦你完成了正确的预处理并提取了正确的特征,你使用什么分类器无关紧要。“我将展示几个例子,说明这与经验现实和将脑机接口应用于临床需要做的事情的精神背道而驰。在此过程中,我将强调一些对机器学习者开放的有趣问题。 |
课程简介: | Brain-computer interfaces (BCI) aim to be the ultimate in assistive technology: decoding a user's intentions directly from brain signals without involving any muscles or peripheral nerves. Thus, some classes of BCI potentially offer hope for users with even the most extreme cases of paralysis, such as in late-stage Amyotrophic Lateral Sclerosis, where nothing else currently allows communication of any kind. Other lines in BCI research aim to restore lost motor function in as natural a way as possible, reconnecting and in some cases re-training motor-cortical areas to control prosthetic, or previously paretic, limbs. Research and development are progressing on both invasive and non-invasive fronts, although BCI has yet to make a breakthrough to widespread clinical application. The high-noise high-dimensional nature of brain-signals, particularly in non-invasive approaches and in patient populations, make robust decoding techniques a necessity. Generally, the approach has been to use relatively simple feature extraction techniques, such as template matching and band-power estimation, coupled to simple linear classifiers. This has led to a prevailing view among applied BCI researchers that (sophisticated) machine-learning is irrelevant since "it doesn't matter what classifier you use once you've done your preprocessing right and extracted the right features." I shall show a few examples of how this runs counter to both the empirical reality and the spirit of what needs to be done to bring BCI into clinical application. Along the way I'll highlight some of the interesting problems that remain open for machine-learners. |
关 键 词: | 脑机接口; 运动功能; 临床应用 |
课程来源: | 视频讲座网 |
数据采集: | 2022-12-04:chenjy |
最后编审: | 2022-12-04:chenjy |
阅读次数: | 40 |