用于视频理解的协作深度度量学习Collaborative Deep Metric Learning for Video Understanding |
|
课程网址: | http://videolectures.net/kdd2018_lee_video_understanding/ |
主讲教师: | Joonseok Lee |
开课单位: | 谷歌 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 视频理解的目标是开发算法,使机器能够在人类专家的水平上理解视频。研究人员已经解决了多个领域,包括视频分类、搜索、个性化推荐等。然而,将这些领域整合到一个统一的学习框架中还存在研究空白。为此,我们提出了一个深度网络,将使用视听内容的视频嵌入到度量空间中,以保留视频与视频的关系。然后,我们使用训练过的嵌入网络来处理包括视频分类和推荐在内的各个领域,在最先进的基线上显示出显著的改进。该方法具有高度可扩展性,可部署在YouTube等大型视频共享平台上。 |
课程简介: | The goal of video understanding is to develop algorithms that enable machines understand videos at the level of human experts. Researchers have tackled various domains including video classification, search, personalized recommendation, and more. However, there is a research gap in combining these domains in one unified learning framework. Towards that, we propose a deep network that embeds videos using their audio-visual content, onto a metric space which preserves video-to-video relationships. Then, we use the trained embedding network to tackle various domains including video classification and recommendation, showing significant improvements over state-of-the-art baselines. The proposed approach is highly scalable to deploy on large-scale video sharing platforms like YouTube. |
关 键 词: | 视频理解; 开发算法; 嵌入网络 |
课程来源: | 视频讲座网 |
数据采集: | 2022-12-06:chenjy |
最后编审: | 2022-12-06:chenjy |
阅读次数: | 38 |