0


用于协同过滤的大规模贝叶斯推理

Large-scale Bayesian Inference for Collaborative Filtering
课程网址: http://videolectures.net/abi07_winther_lsb/  
主讲教师: Ole Winther
开课单位: 丹麦技术大学
开课时间: 2007-12-31
课程语种: 英语
中文简介:
Netflix奖问题为机器学习提供了一个极好的测试平台。该问题规模大,数据复杂且噪声大。因此,为了得到合理的预测,很可能需要相对复杂的模型和仔细的正则化。如果可以将贝叶斯建模方法扩展到Netflix数据集的大小,那么贝叶斯建模方法似乎非常适合该任务,因为在该数据集中可能需要近似极高维的贝叶斯期望。本文提出了一种有序回归低秩矩阵分解模型。我们使用变分贝叶斯(VB)推理算法来证明可以制作大规模贝叶斯算法。该模型还突出了VB的一些一般限制。如果没有进一步的近似,则无法将更准确的期望传播/期望一致(EP/C)推断应用于该双线性模型。因此,我们提出了一种结合EP/C启发的VB算法修改的混合方法。我们将不同的变分近似与拉普拉斯近似、MAP近似和哈密顿MCMC进行比较。在后一个示例中,在1GHz处理器上,使用快速C++代码,大约需要6个小时的计算时间,因此有一个非常明确的案例可以用于确定性近似推断。Netflix数据的另一个很好的特点是测试集的大小,这使得性能上的差异甚至很小。
课程简介: The Netflix prize problem provides an excellent testing ground for machine learning. The problem is large scale and the data complex and noisy. It is therefore likely that relatively complex models with careful regularization are needed in order to get reasonable predictions. A Bayesian modeling approach seems ideal for the task if it is possible to scale it up to the size of the Netflix data set, where extremely high-dimensional Bayesian expectations will possibly have to be approximated. In this talk, an ordinal regression low-rank matrix decomposition model is presented. We use a variational Bayes (VB) inference algorithm to demonstrate that it is possible to make a large scale Bayesian algorithm. This model also highlight some of the general limitations of VB. The more accurate expectation propagation/expectation consistent (EP/C) inference cannot be applied to this bi-linear model without further approximations. We therefore propose a hybrid approach with EP/C inspired modifications of the VB algorithm. We compare the different variational approximations with a Laplace approximation, a MAP approximation and a Hamiltonian MCMC. In the latter one sample takes around 6 hours of computing time on a 1GHz processor, with fast C++ code, so there is a very clear case to be made for deterministic approximate inference. Another good feature of the Netflix data is the magnitude of the the test set which makes even small differences in the performance significant.
关 键 词: 机器学习; 贝叶斯建模; 矩阵分解
课程来源: 视频讲座网
数据采集: 2022-12-07:chenjy
最后编审: 2022-12-07:chenjy
阅读次数: 39