通过先验知识和/或不同实验条件的贝叶斯集成重建基因调控网络Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions |
|
课程网址: | http://videolectures.net/pim07_husmeier_grn/ |
主讲教师: | Dirk Husmeier |
开课单位: | 格拉斯哥大学 |
开课时间: | 2007-11-06 |
课程语种: | 英语 |
中文简介: | 已经有各种尝试通过系统集成生物先验知识来改善从微阵列数据重建基因调控网络。我们的方法遵循贝叶斯范式,其中先验知识以能量函数表示,从中可以获得吉布斯分布形式的网络结构上的先验分布。该分布的超参数表示与相对于数据的先验知识相关联的权重。我们已经推导并测试了一种MCMC方案,用于从后验分布同时采样网络和超参数,从而自动学习如何从先验和数据中权衡信息。我们已经将该方法扩展到贝叶斯耦合方案,用于从在不同实验条件下获得的相关数据集的组合中学习基因调控网络,因此可能与不同的活动子路径相关。 |
课程简介: | There have been various attempts to improve the reconstruction of gene regulatory networks from microarray data by the systematic integration of biological prior knowledge. Our approach follows the Bayesian paradigm where the prior knowledge is expressed in terms of energy functions, from which a prior distribution over network structures is obtained in the form of a Gibbs distribution. The hyperparameters of this distribution represent the weights associated with the prior knowledge relative to the data. We have derived and tested an MCMC scheme for sampling networks and hyperparameters simultaneously from the posterior distribution, thereby automatically learning how to trade off information from the prior and the data. We have extended this approach to a Bayesian coupling scheme for learning gene regulatory networks from a combination of related data sets that were obtained under different experimental conditions and are therefore potentially associated with different active subpathways. |
关 键 词: | 系统集成; 重建基因; 采样网络 |
课程来源: | 视频讲座网 |
数据采集: | 2022-12-08:chenjy |
最后编审: | 2022-12-08:chenjy |
阅读次数: | 28 |