0


通过在线地图搜索查询的分析探索感兴趣的城市区域

Exploring the Urban Region-of-Interest through the Analysis of Online Map Search Queries
课程网址: http://videolectures.net/kdd2018_sun_exploring_analysis/  
主讲教师: Ying Sun
开课单位: 阿卜杜拉国王科技大学
开课时间: 2018-11-23
课程语种: 英语
中文简介:
城市感兴趣区域(ROI)是指具有吸引人们注意力和活动的特定功能的综合城市区域,如娱乐商业区、交通枢纽和城市地标。事实上,在宏观层面,投资回报率是集聚经济的代表之一,在城市商业规划中发挥着重要作用。在微观层面,ROI为了解城市生活、需求和人们的流动性提供了一个有用的场所。然而,由于ROI的模糊性和多样性,它仍然缺乏全面调查ROI的定量方法。为此,本文通过挖掘大规模在线地图查询日志,对ROI分析进行了系统研究,为ROI检测和分析提供了一种新的数据驱动研究范式。具体来说,我们首先将城市区域划分为小区域网格,并根据从地图查询中提取的过渡信息计算其PageRank值作为访问人气。然后,我们提出了一种基于密度的聚类方法,用于将具有高流行度的相邻区域网格合并到集成ROI中。之后,为了进一步探索不同Roi的概况,我们开发了一个时空潜在因素模型URPTM(城市Roi概况主题模型),以识别Roi游客的潜在旅行模式和兴趣点(POI)需求。最后,我们实施了广泛的实验,以根据从北京收集的大规模真实世界数据对我们的方法进行实证评估。事实上,通过可视化从URPTM获得的结果,我们可以成功地获得许多有意义的旅行模式和关于城市生活的有趣发现。
课程简介: Urban Region-of-Interest (ROI) refers to the integrated urban areas with specific functionalities that attract people’s attentions and activities, such as the recreational business districts, transportation hubs, and city landmarks. Indeed, at the macro level, ROI is one of the representatives for agglomeration economies, and plays an important role in urban business planning. At the micro level, ROI provides a useful venue for understanding the urban lives, demands and mobilities of people. However, due to the vague and diversified nature of ROI, it still lacks of quantitative ways to investigate ROIs in a holistic manner. To this end, in this paper we propose a systematic study on ROI analysis through mining the large-scale online map query logs, which provides a new datadriven research paradigm for ROI detection and profiling. Specifically, we first divide the urban area into small region grids, and calculate their PageRank value as visiting popularity based on the transition information extracted from map queries. Then, we propose a density-based clustering method for merging neighboring region grids with high popularity into integrated ROIs. After that, to further explore the profiles of different ROIs, we develop a spatial-temporal latent factor model URPTM (Urban Roi Profiling Topic Model) to identify the latent travel patterns and Point-of-Interest (POI) demands of ROI visitors. Finally, we implement extensive experiments to empirically evaluate our approaches based on the large-scale real-world data collected from Beijing. Indeed, by visualizing the results obtained from URPTM, we can successfully obtain many meaningful travel patterns and interesting discoveries on urban lives.
关 键 词: 城市感兴趣区域; 特定功能; 聚类方法
课程来源: 视频讲座网
数据采集: 2022-12-12:chenjy
最后编审: 2022-12-12:chenjy
阅读次数: 34