0


低等级和缺失数据的分类

Classification with Low Rank and Missing Data
课程网址: http://videolectures.net/icml2015_livni_classification/  
主讲教师: Roi Livni
开课单位: 耶路撒冷希伯来大学
开课时间: 2015-09-27
课程语种: 英语
中文简介:
我们考虑有缺失数据的分类和回归任务,并假设(干净的)数据位于低秩子空间中。已知找到隐藏子空间在计算上是困难的。然而,使用非适当的公式,我们给出了一种有效的不可知算法,该算法与最佳线性分类器结合数据所在的最佳低维子空间进行分类。一个直接的含义是,我们的算法可以线性(和通过内核的非线性)进行可证明的分类,以及可以访问完整数据的最佳分类器。
课程简介: We consider classification and regression tasks where we have missing data and assume that the (clean) data resides in a low rank subspace. Finding a hidden subspace is known to be computationally hard. Nevertheless, using a non-proper formulation we give an efficient agnostic algorithm that classifies as good as the best linear classifier coupled with the best low-dimensional subspace in which the data resides. A direct implication is that our algorithm can linearly (and non-linearly through kernels) classify provably as well as the best classifier that has access to the full data.
关 键 词: 缺失数据; 回归任务; 最佳分类器
课程来源: 视频讲座网
数据采集: 2022-12-12:chenjy
最后编审: 2022-12-12:chenjy
阅读次数: 20