0


推荐游戏和媒体偏好的协作学习

Collaborative Learning of Preferences for Recommending Games and Media
课程网址: http://videolectures.net/nipsworkshops2011_graepel_collaborative/  
主讲教师: Thore Graepel
开课单位: 微软研究
开课时间: 2012-01-24
课程语种: 英语
中文简介:
我们最近在微软Xbox Live Marketplace上开发了一个游戏、视频和音乐推荐系统,拥有超过3500万用户。我将讨论与此任务相关的挑战,包括可用数据的类型、用户反馈数据的性质、隐式与显式以及问题的规模。然后,我将描述一个概率图形模型,该模型将成对偏好和列表偏好的预测与来自矩阵分解和基于内容的推荐系统的想法相结合,以应对其中的一些挑战。新模型结合了TrueSkill和火柴盒两个其他模型的思想,将对其进行审查。TrueSkill是一个基于Xbox Live在线游戏结果排名来评估玩家技能的模型,火柴盒是一个贝叶斯推荐系统,基于将用户/物品特征映射到共同特征空间。这是与蒂姆·萨利曼斯和乌尔里希·帕奎特的合作。TrueSkill的贡献者包括Ralf Herbrich和Tom Minka,火柴盒的贡献者有Ralf Herdrich和David Stern。
课程简介: The talk is motivated by our recent work on a recommender system for games, videos, and music on Microsoft’s Xbox Live Marketplace with over 35M users. I will discuss the challenges associated with such a task including the type of data available, the nature of the user feedback data, implicit versus explicit, and the scale of the problem. I will then describe a probabilistic graphical model that combines the prediction of pairwise and listwise preferences with ideas from matrix factorisation and contentbased recommender systems to meet some of these challenges. The new model combines ideas from two other models, TrueSkill and Matchbox, which will be reviewed. TrueSkill is a model for estimating players’ skills based on outcome rankings in online games on Xbox Live, and Matchbox is a Bayesian recommender system based on mapping user/item features into a common trait space. This is joint work with Tim Salimans and Ulrich Paquet. Contributors to TrueSkill include Ralf Herbrich and Tom Minka, contributors to Matchbox include Ralf Herbrich and David Stern.
关 键 词: 推荐系统; 概率图形模型; 特征空间
课程来源: 视频讲座网
数据采集: 2022-12-14:chenjy
最后编审: 2023-05-11:chenjy
阅读次数: 18