0


Twitter情感分析的语义模式

Semantic Patterns for Sentiment Analysis of Twitter
课程网址: http://videolectures.net/iswc2014_saif_sentiment_analysis/  
主讲教师: Hassan Saif
开课单位: 开放大学
开课时间: 2014-12-19
课程语种: 英语
中文简介:
大多数现有的推特情感分析方法都假设情感是通过情感词语明确表达的。然而,情感通常通过推文中单词之间的潜在语义关系、模式和依赖性来含蓄地表达。在本文中,我们提出了一种新的方法,可以自动捕获推文中具有相似上下文语义和情感的单词模式。与之前关于情感模式提取的工作不同,我们提出的方法不依赖外部和固定的句法模板/模式集,也不需要对推文中句子的句法结构进行深入分析。我们通过使用提取的语义模式作为两个任务中的分类特征,来评估推特和实体级情感分析任务的方法。我们在评估中使用了9个Twitter数据集,并将我们模式的性能与6个最先进的基线进行了比较。结果表明,我们的模式在所有数据集上的平均F度量值始终优于所有其他基线,推特级别为2.19%,实体级别为7.5%。
课程简介: Most existing approaches to Twitter sentiment analysis assume that sentiment is explicitly expressed through affective words. Nevertheless, sentiment is often implicitly expressed via latent semantic relations, patterns and dependencies among words in tweets. In this paper, we propose a novel approach that automatically captures patterns of words of similar contextual semantics and sentiment in tweets. Unlike previous work on sentiment pattern extraction, our proposed approach does not rely on external and fixed sets of syntactical templates/patterns, nor requires deep analyses of the syntactic structure of sentences in tweets. We evaluate our approach with tweet- and entity-level sentiment analysis tasks by using the extracted semantic patterns as classification features in both tasks. We use 9 Twitter datasets in our evaluation and compare the performance of our patterns against 6 state-of-the-art baselines. Results show that our patterns consistently outperform all other baselines on all datasets by 2.19% at the tweet-level and 7.5% at the entity-level in average F-measure.
关 键 词: 情感分析; 单词模式; 分类特征
课程来源: 视频讲座网
数据采集: 2022-12-14:chenjy
最后编审: 2023-05-11:chenjy
阅读次数: 24